Advertisement

Study on the Influence of Prior Cold Work on Precipitation Behavior of 304HCu Stainless Steel During Isothermal Aging

  • R. ManojkumarEmail author
  • S. Mahadevan
  • C. K. Mukhopadhyay
  • M. N. Singh
Article
  • 22 Downloads

Abstract

The precipitation strengthening behavior of 304HCu austenitic stainless steel during isothermal aging at 650 °C is studied under 10 and 20 pct prior cold-worked conditions. The age hardening behavior under these cold-working conditions have been studied using hardness and electrical conductivity measurements. The analysis of electrical conductivity and hardness variation, during isothermal aging at 650 °C using the Johnson–Mehl–Avrami equation, indicates an increase in precipitation kinetics in the matrix, influenced by the dislocations formed during cold working. Further, XRD profiles of different cold-worked samples obtained from the INDUS-2 synchrotron are able to indicate the formation of very fine precipitates during thermal aging and these findings are corroborated with conductivity and hardness changes. The observed change in precipitation kinetics due to deformation is analyzed to evaluate an equivalent change in activation energy which is attributed to an equivalent of increase in aging temperature.

Notes

Acknowledgments

The authors thank Shri. A. Viswanath and Smt. T. Nivedha, Non-Destructive Evaluation Division (NDED), Metallurgy and Materials Group (MMG), IGCAR, for their help in preparing the samples. The authors express their gratitude to Dr. A. K. Sinha and Dr. Archana Sagdeo, Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, for their involvement during the experiments at INDUS II synchrotron. The authors would also like to thank Dr. G. Amarendra, Director, MMG, IGCAR, and Dr. A. K. Bhaduri, Director, IGCAR, for their constant encouragement and support.

References

  1. 1.
    R. Viswanathan and W. Bakker: J. Mater. Eng. Perform., 2001, vol. 10, pp. 83.Google Scholar
  2. 2.
    P.S. Weitzel: Steam Generator for Advanced Ultra Supercritical Power Plants 700 °C to 760 °C, in Proc. ASME 2011 Power Conf., Denver, Colorado, USA, 2011, pp. 1–10.Google Scholar
  3. 3.
    R. Viswanathan, K. Coleman, and U. Rao: Int. J. Press. Vessels Pip., 2006, vol. 83, pp. 778-783.CrossRefGoogle Scholar
  4. 4.
    D. Gandy, J.P. Shingledecker, P.J. Maziasz, G. Maurer, and J. Magee: Adv. Mater. Technol. Fossil Power Plants: Proc. Sixth Int. Conf., Santa Fe, New Mexico, USA, 2011, pp. 916–34.Google Scholar
  5. 5.
    I. Sen, E. Amankwah, N. S. Kumar, E. Fleury, K. Ohishi, K. Hono, and U. Ramamurty (2011) Mater. Sci. Eng. A, 528:4491-4499.CrossRefGoogle Scholar
  6. 6.
    I.T. Hong and C.H. Koo: Mater. Sci. Eng. A, 2005, vol. 393, pp. 213-222.CrossRefGoogle Scholar
  7. 7.
    TAN Shu-ping and Z. Wang (2010) J. Iron. Steel Res. Int, 17:63-68.Google Scholar
  8. 8.
    A. Mathur, O.P. Bhutani, T. Jayakumar, D.K. Dubey, and S.C. Chetal: Adv. Mater. Technol. Fossil Power Plants: Proc. Seventh Int. Conf., Waikoloa, Hawaii, USA, 2013, pp. 53–59.Google Scholar
  9. 9.
    A. H. V. Pavan, K. S. N. Vikrant, R. Ravibharath, and K. Singh (2015) Mater. Sci. Eng. A, 542: 32-41.CrossRefGoogle Scholar
  10. 10.
    Y. Sawaragi and S. Hirano: in New Alloys for Pressure Vessels and Piping, New York, 1990, pp. 141–146.Google Scholar
  11. 11.
    C Chi, H Yu, J Dong, X Xie, Z Cui, X Chen, and F Lin: Acta Metall. Sinica, vol. 24, pp. 141-147, 2011.Google Scholar
  12. 12.
    ManmathkumarDash, T. Karthikeyan, R. Mythili, V.D. Vijayanand, and S. Saroja (2017) Metall. Mater. Trans. A, 48A: 4883-4894.CrossRefGoogle Scholar
  13. 13.
    A. Iseda, H. Okada, H. Semba, and M. Igarashi: Energy Materials, 2007, vol. 2, pp. 199-206.CrossRefGoogle Scholar
  14. 14.
    V. Ganesan, K. Laha, and A. K. Bhaduri: Trans Indian Inst Met, 2016, vol. 69, pp. 247-251.CrossRefGoogle Scholar
  15. 15.
    X Huang, Q Zhou, W Wang, W S Li, and Y Gao: Mater. High Temp., 2017, vol. 35, pp. 438-450.CrossRefGoogle Scholar
  16. 16.
    L Ren, L Nan, and K Yang: Mater. Des., 2011, vol. 32, pp. 2374-2379.CrossRefGoogle Scholar
  17. 17.
    B. Dutta, E. J. Palmier, and C. M. Sellars: Acta mater., 2001, vol. 49, pp. 785-794.CrossRefGoogle Scholar
  18. 18.
    Y Zhou, Y Liu, Y Liu, C Liu, J Yu, Y Huang, H Li, WL: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1448-1456.CrossRefGoogle Scholar
  19. 19.
    S. Mahadevan, R. Manojkumar, T. Jayakumar, C. R. Das, and B. P.C. Rao: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3109-3118.CrossRefGoogle Scholar
  20. 20.
    R. Manojkumar, S. Mahadevan, C. K. Mukhopadhyay, and B. P. C. Rao (2017) J. Mater. Res. 32: 4263-4271.CrossRefGoogle Scholar
  21. 21.
    U. K. Viswanathan, P. K. K. Nayar, and R. Krishnan: Mater. Sci. Technol., 1989, vol. 5, pp. 346-349.CrossRefGoogle Scholar
  22. 22.
    C. V. Robino, P. W. Hochanadel, G. R. Edwards, and M. J. Cieslak: Metallurgical and materials transactions A, 1994, vol. 25A, pp. 697-704.CrossRefGoogle Scholar
  23. 23.
    VK Vasudevan, SJ Kim, and CM Wayman: Metall. Trans. A, 1990, vol. 21A, pp. 265-2668.Google Scholar
  24. 24.
    E Kozeschnik, Modeling Solid-State Precipitation. 1st ed. Momentum Press, New york, USA, 2013.Google Scholar
  25. 25.
    A.K. Sinha, A. Sagdeo, P. Gupta, A. Upadhyay, A. Kumar, M.N. Singh, R.K. Gupta, S.R. Kane, A. Verma, S.K. Deb (2013) J. Phys. Conf. Ser., 425: 072017.CrossRefGoogle Scholar
  26. 26.
    J Jiang and L Zhu: Mater. Sci. Eng. A, 2012, vol. 539, pp. 170-176.CrossRefGoogle Scholar
  27. 27.
    Q Zhou, S Ping, X Meng, R Wang, and Y Gao (2017) J. Mater. Eng. Perform., 26: 6130–6139.CrossRefGoogle Scholar
  28. 28.
    S-M Hong, M-Y Kim, D-J Min, K Lee, J-H Shim, D-I Kim, J-Y Suh, W-S Jung, I-S Choi: Mater. Charact., 2014, vol. 94, pp. 7-13.CrossRefGoogle Scholar
  29. 29.
    L Ren, J Zhu, L Nan, and K Yang: Mater.Des., 2011, vol. 32, pp. 3980-3985.CrossRefGoogle Scholar
  30. 30.
    Y Zhou, C Liu, Y Liu, Q Guo, and H Li: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 283-293.CrossRefGoogle Scholar
  31. 31.
    A. Boeuf, C. Crico, R. Caciuffo, F. Rustechelli, I. Pomot, G. Uny: Mater. Lett., 1985, vol. 3, pp. 115-118.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • R. Manojkumar
    • 1
    Email author
  • S. Mahadevan
    • 1
  • C. K. Mukhopadhyay
    • 1
  • M. N. Singh
    • 2
  1. 1.Non Destructive Evaluation DivisionIndira Gandhi Centre for Atomic Research, HBNIKalpakkamIndia
  2. 2.Hard X-ray Applications Lab, Synchrotrons Utilization SectionRaja Ramanna Centre for Advanced TechnologyIndoreIndia

Personalised recommendations