Advertisement

Influence of Cr Content on the Microstructure and Electrochemical Corrosion in Plasma Cladding Ni-Cr Coatings

  • Wenya Zhang
  • Canming WangEmail author
  • Qiang Song
  • Hongzhi CuiEmail author
  • Xiaoli Feng
  • Chunzhi Zhang
Article
  • 25 Downloads

Abstract

Ni-xCr (x = 20, 30 and 40 wt pct, respectively) alloy corrosion resistant coatings were manufactured on Q235 substrate by plasma cladding. The effects of the Cr content on the phase composition, microstructure, and corrosion resistance of the Ni-xCr coatings were investigated in detail. The results showed that the main phases of the Ni-xCr coatings were γ-[Ni, Fe] solid solutions with face-centered cubic (FCC) structure. Electrochemical corrosion tests of different polarization voltages showed that the inhomogeneous distribution of composition and the presence of the multiphase structure led to the occurrence of corrosion. The occurrence of the Cr-rich phase increased the sensitivity of the Cr-poor phase and further accelerated the corrosion process. The Ni-xCr coating with intermediate Cr content (Ni-30Cr) had the best corrosion resistance, which depends on the phase composition of the coating.

Notes

Acknowledgment

This research was supported by Distinguished Taishan Scholars in Climbing Plan (tspd20161006), National 863 Project Plan of China (2015AA034404), and the National Natural Science Foundation of China Youth Fund Project (Grant No. 51801114).

References

  1. 1.
    H. Liu, Q. Xu, C. Wang and X. Zhang: J. Alloys Compd., 2015, vol. 621, pp. 357-363.CrossRefGoogle Scholar
  2. 2.
    S. P. Sidel’nikova, V. V. Parshutin, G. F. Volodina, N. V. Chernyshova and A. V. Koval’: Russ. J. Appl. Chem., 2017, vol. 89, pp. 1740-1746.CrossRefGoogle Scholar
  3. 3.
    P. SureshBabu, Y. Madhavi, L. RamaKrishna, D. SrinivasaRao and G. Padmanabham: Jom, 2018, vol. 70, pp. 2636-2649.CrossRefGoogle Scholar
  4. 4.
    G. Y. Koga, W. Wolf, R. Schulz, S. Savoie, C. Bolfarini, C. S. Kiminami and W. J. Botta: Surf. Coat. Technol., 2019, vol. 357, pp. 993-1003.CrossRefGoogle Scholar
  5. 5.
    5. M. F. Pillis, G. A. Geribola, G. Scheidt, E. G. de Araújo, M. C. L. de Oliveira and R. A. Antunes: Corros. Sci., 2016, vol. 102, pp. 317-325.CrossRefGoogle Scholar
  6. 6.
    6. H. B. Lee and M. Y. Wu: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4667-4680.CrossRefGoogle Scholar
  7. 7.
    R. Garg, N. Rajagopalan, M. Pyeon, Y. Gönüllü, T. Fischer, A. S. Khanna and S. Mathur: Surf. Coat. Technol., 2018, vol. 356, pp. 49-55.CrossRefGoogle Scholar
  8. 8.
    Y. Q. Jiang, J. Li, Y. F. Juan, Z. J. Lu and W. L. Jia: J. Alloys Compd., 2019, vol. 775, pp. 1-14.CrossRefGoogle Scholar
  9. 9.
    9. J. Liu, J. Li, X. Cheng and H. Wang: Metall. Mater. Trans. A, 2017, vol. 49, pp. 595-603.Google Scholar
  10. 10.
    10. A. Kunyarong and K. Fakpan: Mater. Today: Proceedings, 2018, vol. 5, pp. 9244-9249.Google Scholar
  11. 11.
    11. M. Q. Wan, J. Shi, L. Lei, Z. Y. Cui, H. L. Wang and X. Wang: J. Mater. Eng. Perform., 2018, vol. 27, pp. 2844-2854.CrossRefGoogle Scholar
  12. 12.
    12. B. Liu, X. Wei, W. Wang, J. Lu and J. Ding: Sol. Energy Mater. Sol. Cells., 2017, vol. 170, pp. 77-86.CrossRefGoogle Scholar
  13. 13.
    13. Z. Feng, M. Tang, Y. Liu, Z. Yan, G. Li and R. Zhang: Surf. Eng., 2017, vol. 34, pp. 309-315.CrossRefGoogle Scholar
  14. 14.
    14. G. Jin, Y. Li, H. Cui, X. Cui and Z. Cai: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2412-2419.CrossRefGoogle Scholar
  15. 15.
    15. J. Wen, H. Cui, N. Wei, X. Song, G. Zhang, C. Wang and Q. Song: J. Alloys Compd., 2017, vol. 695, pp. 2424-2433.CrossRefGoogle Scholar
  16. 16.
    16. Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang and Y. Wu: Appl. Surf. Sci., 2017, vol. 396, pp. 1420-1426.CrossRefGoogle Scholar
  17. 17.
    17. H. Sun, M. Guo, F. Meng and A. Liu: Trans. Indian Inst. Met., 2015, vol. 69, pp. 1369-1376.CrossRefGoogle Scholar
  18. 18.
    18. Y. Lu, G. Lu, F. Liu, Z. Chen and K. Tang: J. Alloys Compd., 2015, vol. 637, pp. 149-154.CrossRefGoogle Scholar
  19. 19.
    19. K. Liu, Y. Li and J. Wang: Mater. Des., 2016, vol. 105, pp. 171-178.CrossRefGoogle Scholar
  20. 20.
    J. SopouSek, T. Kruml (1996) Scripta Mater. 35: 689-693.CrossRefGoogle Scholar
  21. 21.
    21. V. Raghavan: J. Phase Equilib. Diffus., 2008, vol. 30, pp. 94-95.CrossRefGoogle Scholar
  22. 22.
    22. J. Tomiska: J. Alloys Compd., 2004, vol. 379, pp. 176-187.CrossRefGoogle Scholar
  23. 23.
    23. M. S. Kabir, P. Munroe, Z. Zhou and Z. Xie: Ceram. Int., 2018, vol. 44, pp. 11364-11373.CrossRefGoogle Scholar
  24. 24.
    24. T.-T. Shun, L.-Y. Chang and M.-H. Shiu: Mater. Charact., 2012, vol. 70, pp. 63-67.CrossRefGoogle Scholar
  25. 25.
    25. M. Wang, Z. Zhou, L. Wu, Y. Ding, F. Xu and Z. Wang: J. Therm. Spray Technol., 2018, vol. 27, pp. 769-777.CrossRefGoogle Scholar
  26. 26.
    26. M. Yan and W. Z. Zhu: Surf. Coat. Technol., 1997, vol. 92, pp. 157-163.CrossRefGoogle Scholar
  27. 27.
    27. J. Lei, C. Shi, S. Zhou, Z. Gu and L.-C. Zhang: Surf. Coat. Technol., 2018, vol. 334, pp. 274-285.CrossRefGoogle Scholar
  28. 28.
    28. L. Zhang, D. Sun, H. Yu and H. Li: Mater. Sci. Eng. A, 2007, vol. 457, pp. 319-324.CrossRefGoogle Scholar
  29. 29.
    29. Y. F. Juan, J. Li, Y. Q. Jiang, W. L. Jia and Z. J. Lu: Appl. Surf. Sci., 2019, vol. 465, pp. 700-714.CrossRefGoogle Scholar
  30. 30.
    30. B. Sefer and S. Virtanen: Corros. Sci., 2019, vol. 154, pp. 287-304.CrossRefGoogle Scholar
  31. 31.
    Ohmi T, Murota Y, Kirihara K, Kudoh M (2001) J. Jpn. Inst Met. 65:458-463.CrossRefGoogle Scholar
  32. 32.
    32. J. J. Marattukalam, A. K. Singh, S. Datta, M. Das, V. K. Balla, S. Bontha and S. K. Kalpathy: Mater. Sci. Eng. C, 2015, vol. 57, pp. 309-13.CrossRefGoogle Scholar
  33. 33.
    33. H. Luo, Q. Yu, C. Dong, G. Sha, Z. Liu, J. Liang, L. Wang, G. Han and X. Li: Corros. Sci., 2018, vol. 139, pp. 185-196.CrossRefGoogle Scholar
  34. 34.
    A. Conde, R. Colaco, R. Vilar and J. D. Damboreaen: Mater. Des., 2000, vol. 21, pp. 441-445.CrossRefGoogle Scholar
  35. 35.
    35. X. Gong, Y. Li, Y. Nie, Z. Huang, F. Liu, L. Huang, L. Jiang and H. Mei: Corros. Sci., 2018, vol. 139, pp. 68-75.CrossRefGoogle Scholar
  36. 36.
    36. V. M. C. A. Oliveira, C. Aguiar, A. M. Vazquez, A. Robin and M. J. R. Barboza: Corros. Sci., 2014, vol. 88, pp. 317-327.CrossRefGoogle Scholar
  37. 37.
    37. M. L. Zheludkevich, R. Serra, M. F. Montemor, K. A. Yasakau, I. M. M. Salvado and M. G. S. Ferreira: Electrochim. Acta, 2005, vol. 51, pp. 208-217.CrossRefGoogle Scholar
  38. 38.
    38. J. B. Sun, G. A. Zhang, W. Liu and M. X. Lu: Corros. Sci., 2012, vol. 57, pp. 131-138.CrossRefGoogle Scholar
  39. 39.
    39. H. Luo, Z. Li, A. M. Mingers and D. Raabe: Corros. Sci., 2018, vol. 134, pp. 131-139.CrossRefGoogle Scholar
  40. 40.
    40. C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh and H. C. Shih: Corros. Sci., 2008, vol. 50, pp. 2053-2060.CrossRefGoogle Scholar
  41. 41.
    41. B. Deng, Z. Wang, Y. Jiang, H. Wang, J. Gao and J. Li: Electrochim. Acta, 2009, vol. 54, pp. 2790-2794.CrossRefGoogle Scholar
  42. 42.
    42. T. Poornima, N. Jagannatha and A. N. Shetty: Port. Electrochim. Acta, 2010, vol. 28, pp. 173-188.CrossRefGoogle Scholar
  43. 43.
    43. M. P. Ryan, D. E. Williams, R. J. Chater, B. M. Hutton and D. S. McPhail: Nature, 2002, vol. 415, p 770.CrossRefGoogle Scholar
  44. 44.
    44. S. K. Bonagani, V. Bathula and V. Kain: Corros. Sci., 2018, vol. 131, pp. 340-354.CrossRefGoogle Scholar
  45. 45.
    45. J. Gong, Y. M. Jiang, B. Deng, J. L. Xu, J. P. Hu and J. Li: Electrochim. Acta, 2010, vol. 55, pp. 5077-5083.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations