The Anisotropy of Serrated Flow Behavior of Al-Cu-Li (AA2198) Alloy

  • Niraj Nayan
  • S. V. S. Narayana MurtyEmail author
  • Rajdeep Sarkar
  • A. K. Mukhopadhyay
  • Sarita Ahlawat
  • S. K. Sarkar
  • M. J. N. V. Prasad
  • I. Samajdar


The serrations in tensile stress–strain curves for Al-Cu-Li-based AA2198 alloy sheets were studied in various temper conditions. The alloy exhibited typical Portevin-Le-Chatelier effects with intense serrations in the stress–strain curves. This was observed in the solution-treated condition, while the intensity and frequency of serrations decreased upon aging. Detailed microscopic examination together with thermal stability studies showed the absence of δ′ (i.e., metastable Al3Li) precipitate in the alloy. As a result, the shearing of δ’ precipitates by dislocations during plastic deformation did not occur in the present alloy. The quasistatic tensile testing as a function of test temperature, strain rate and temper condition and the acoustic emission study confirmed that the combined interaction of copper and lithium atoms with mobile dislocations is the underlying mechanism for the plastic instability in this alloy. The alloy displayed significant anisotropic behavior in terms of mechanical properties and serration characteristics, and these observations are related to the difference in the effective grain size of the samples in various orientations.



The authors wish to acknowledge the financial support of Indian Space Research Organization (ISRO), and Defence Research and Development Organization (DRDO), Government of India.

Supplementary material

11661_2019_5431_MOESM1_ESM.pdf (478 kb)
Supplementary material 1 (PDF 477 kb)


  1. 1.
    RC Picu, G Vincze, F Ozturk, JJ Gracio, F Barlat and AM Maniatty, Materials Science and Engineering: A 2005, vol. 390, pp. 334-343.CrossRefGoogle Scholar
  2. 2.
    YZ Shen, KH Oh and DN Lee, Materials Science and Engineering: A 2006, vol. 435, pp. 343-354.CrossRefGoogle Scholar
  3. 3.
    A Portevin and F Le Chatelier, Comptes Rendus de l’Académie des Sciences Paris 1923, vol. 176, pp. 507-510.Google Scholar
  4. 4.
    Ahmet Yilmaz, Science and technology of advanced materials 2011, vol. 12, p. 063001.CrossRefGoogle Scholar
  5. 5.
    Győző Horváth, Nguyen Q Chinh, Jenő Gubicza and János Lendvai, Materials Science and Engineering: A 2007, vol. 445, pp. 186-192.CrossRefGoogle Scholar
  6. 6.
    Alexis Deschamps, Benjamin Decreus, Frederic De Geuser, Thomas Dorin and Matthew Weyland, Acta Materialia 2013, vol. 61, pp. 4010-4021.CrossRefGoogle Scholar
  7. 7.
    Andrzej Dziadoń, Scripta materialia 1996, vol. 34, pp. 375-380.Google Scholar
  8. 8.
    Zs Kovács, D Fátay, K Nyilas and J Lendvai, Journal of engineering materials and technology 2002, vol. 124, pp. 23-26.CrossRefGoogle Scholar
  9. 9.
    XM Cheng and JG Morris, Scripta Materialia 2000, vol. 43, pp. 651-658.CrossRefGoogle Scholar
  10. 10.
    D Thevenet, M Mliha-Touati and A Zeghloul, Materials Science and Engineering: A 1999, vol. 266, pp. 175-182.CrossRefGoogle Scholar
  11. 11.
    Egidio Rizzi and Peter Hähner, International Journal of Plasticity 2004, vol. 20, pp. 121-165.CrossRefGoogle Scholar
  12. 12.
    H Dierke, F Krawehl, S Graff, S Forest, J Šachl and H Neuhäuser, Computational Materials Science 2007, vol. 39, pp. 106-112.CrossRefGoogle Scholar
  13. 13.
    GJ Fan, GY Wang, H Choo, PK Liaw, YS Park, BQ Han and EJ Lavernia, Scripta Materialia 2005, vol. 52, pp. 929-933.CrossRefGoogle Scholar
  14. 14.
    Huifeng Jiang, Qingchuan Zhang, Xuedong Chen, Zhongjia Chen, Zhenyu Jiang, Xiaoping Wu and Jinghong Fan, Acta Materialia 2007, vol. 55, pp. 2219-2228.CrossRefGoogle Scholar
  15. 15.
    A Chatterjee, A Sarkar, P Barat, P Mukherjee and N Gayathri, Materials Science and Engineering: A 2009, vol. 508, pp. 156-160.CrossRefGoogle Scholar
  16. 16.
    E.O. Hall: Yield point phenomena in metals and alloys. Springer, Berlin, 2012.Google Scholar
  17. 17.
    JM Gentzbittel and R Fougeres, Scripta metallurgica 1987, vol. 21, pp. 1411-1416.CrossRefGoogle Scholar
  18. 18.
    JT Evans, Scripta metallurgica 1987, vol. 21, pp. 1435-1438.CrossRefGoogle Scholar
  19. 19.
    PJ Gregson, DS McDarmaid and E Hunt, Materials science and technology 1988, vol. 4, pp. 713-718.CrossRefGoogle Scholar
  20. 20.
    JC Huang and GT Gray, Scripta metallurgica et materialia 1990, vol. 24, pp. 85-90.CrossRefGoogle Scholar
  21. 21.
    Subodh Kumar, Janusz Król and Erwin Pink, Scripta Materialia 1996, vol. 35, pp. 775-780.CrossRefGoogle Scholar
  22. 22.
    M Cieslar, P Vostrý and I Stulíková, Phys. Status Solidi (a) 1996, vol. 157, pp. 217-227.CrossRefGoogle Scholar
  23. 23.
    F Chmelık, E Pink, J Król, J Balık, J Pešička and P Lukáč, Acta Materialia 1998, vol. 46, pp. 4435-4442.CrossRefGoogle Scholar
  24. 24.
    Erwin Pink, Subodh Kumar and Baohui Tian, Materials Science and Engineering: A 2000, vol. 280, pp. 17-24.CrossRefGoogle Scholar
  25. 25.
    DL Sun, DZ Yang and TQ Lei, Materials Chemistry and Physics 1990, vol. 25, pp. 307-313.CrossRefGoogle Scholar
  26. 26.
    S Kumar and HB McShane, Scripta metallurgica et materialia 1993, vol. 28, pp. 1149-1154.CrossRefGoogle Scholar
  27. 27.
    S Kumar and E Pink, Acta Materialia 1997, vol. 45, pp. 5295-5301.CrossRefGoogle Scholar
  28. 28.
    SJ Zambo and JA Wert, Scripta metallurgica et materialia 1993, vol. 29, pp. 1523-1528.CrossRefGoogle Scholar
  29. 29.
    H. Ovri and E. T. Lilleodden, Acta Materialia 2015, vol. 89, pp. 88-97.CrossRefGoogle Scholar
  30. 30.
    LP Kubin, A Styczynski and Y Estrin, Scripta metallurgica et materialia 1992, vol. 26, pp. 1423-1428.CrossRefGoogle Scholar
  31. 31.
    Subodh Kumar, Scripta metallurgica et materialia 1995, vol. 33, pp. 81-86.CrossRefGoogle Scholar
  32. 32.
    BH Tian, YG Zhang and CQ Chen, Materials Science and Engineering: A 1998, vol. 254, pp. 227-233.CrossRefGoogle Scholar
  33. 33.
    F Zeides and I Roman, Scripta metallurgica et materialia 1990, vol. 24, pp. 1919-1922.CrossRefGoogle Scholar
  34. 34.
    N Ilić, DJ Drobnjak, V Radmilović, MT Jovanović and D Marković, Scripta materialia 1996, vol. 34, pp. 1123-1130.CrossRefGoogle Scholar
  35. 35.
    AK Vasudevan, WG Fricke, RC Malcolm, RJ Bucci, MA Przystupa and F Barlat, Metallurgical Transactions A 1988, vol. 19, pp. 731-732.CrossRefGoogle Scholar
  36. 36.
    KK Cho, YH Chung, CW Lee, SI Kwun and MC Shin, Scripta Materialia 1999, vol. 40, pp. 651-657.CrossRefGoogle Scholar
  37. 37.
    A. Cho, Z. Long, B. Lisagor, T. Bales, M.S. Domack, J.A. Wagner: in Materials Science Forum, Trans Tech Publ, 2006, pp. 1585–1590.Google Scholar
  38. 38.
    R. Shabadi, S. Kumar, H. J. Roven, E.S. Dwarakadasa, Mater. Sci. Eng. A 2004, vol. 382, pp. 203-208.CrossRefGoogle Scholar
  39. 39.
    J Mizera and KJ Kurzydlowski, Scripta Materialia 2001, vol. 45, pp. 801-806.CrossRefGoogle Scholar
  40. 40.
    A Deschamps, M Garcia, J Chevy, B Davo and F De Geuser, Acta Materialia 2017, vol. 122, pp. 32-46.CrossRefGoogle Scholar
  41. 41.
    PJ Gregson, HM Flower, CNJ Tite and AK Mukhopadhyay, Materials science and technology 1986, vol. 2, pp. 349-353.CrossRefGoogle Scholar
  42. 42.
    AK Jena, AK Gupta and MC Chaturvedi, Acta Metallurgica 1989, vol. 37, pp. 885-895.CrossRefGoogle Scholar
  43. 43.
    H.H. Jo and K.-I. Hirano, in Materials Science Forum, Trans Tech Publ, 1987, pp. 377–382.Google Scholar
  44. 44.
    AK Mukhopadhyay, GJ Shiflet and EA Starke Jr, Scripta Metallurgica et Materialia 1990, vol. 24, pp. 307-312.CrossRefGoogle Scholar
  45. 45.
    G Sha, RKW Marceau, X Gao, BC Muddle and SP Ringer, Acta Materialia 2011, vol. 59, pp. 1659-1670.CrossRefGoogle Scholar
  46. 46.
    L Kovarik, SA Court, HL Fraser and MJ Mills, Acta Materialia 2008, vol. 56, pp. 4804-4815.CrossRefGoogle Scholar
  47. 47.
    N. Nayan, S.V.S. NarayanaMurty, A.K. Mukhopadhyay, K.S. Prasad, A.K. Jha, B. Pant, S.C. Sharma, K.M. George, Mater. Sci. Eng. A 2013, vol. 585, pp. 475-479.CrossRefGoogle Scholar
  48. 48.
    B Decreus, A Deschamps, F De Geuser, P Donnadieu, C Sigli and M Weyland, Acta Materialia 2013, vol. 61, pp. 2207-2218.CrossRefGoogle Scholar
  49. 49.
    Thomas Dorin, Alexis Deschamps, Frédéric De Geuser, Williams Lefebvre and Christophe Sigli, Philosophical Magazine 2014, vol. 94, pp. 1012-1030.CrossRefGoogle Scholar
  50. 50.
    WM Webernig, E Pink and J Krol, Zeitschrift fuer Metallkunde 1986, vol. 77, pp. 188-192.Google Scholar
  51. 51.
    NQ Chinh, F Csikor, Z Kovács J Lendvai, J. Mater. Res., 2000, vol. 15, pp. 1037-1040.CrossRefGoogle Scholar
  52. 52.
    Avraham Rosen, Materials Science and Engineering 1971, vol. 7, pp. 191-202.CrossRefGoogle Scholar
  53. 53.
    CR Heiple and SH Carpenter, Journal of Acoustic Emission 1987, vol. 6, pp. 177-204.Google Scholar
  54. 54.
    CR Heiple, SH Carpenter and MJ Carr, Metal Science 1981, vol. 15, pp. 587-598.CrossRefGoogle Scholar
  55. 55.
    CH Caceres and AH Rodriguez, Acta Metallurgica 1987, vol. 35, pp. 2851-2864.CrossRefGoogle Scholar
  56. 56.
    F Chmelik, Z Trojanova, Z Převorovský and P Lukáč, Materials Science and Engineering: A 1993, vol. 164, pp. 260-265.CrossRefGoogle Scholar
  57. 57.
    PG McCormick, Philosophical Magazine 1971, vol. 23, pp. 949-956.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Niraj Nayan
    • 1
    • 2
  • S. V. S. Narayana Murty
    • 1
    Email author
  • Rajdeep Sarkar
    • 3
  • A. K. Mukhopadhyay
    • 3
  • Sarita Ahlawat
    • 4
  • S. K. Sarkar
    • 4
  • M. J. N. V. Prasad
    • 2
  • I. Samajdar
    • 2
  1. 1.Materials and Mechanical Entity, Vikram Sarabhai Space CentreIndian Space Research OrganizationTrivandrumIndia
  2. 2.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  3. 3.Defence Metallurgical Research LaboratoryHyderabadIndia
  4. 4.Glass and Advanced Materials DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations