The Positive Effect of Hydrogen Alloying on the Phase Tailoring and Mechanical Properties of Sintered Ti-13Nb SMAs

  • Z. Xu
  • B. Yuan
  • Y. GaoEmail author


The effect of hydrogen alloying on phase tailoring and mechanical properties of the sintered Ti-13Nb (at pct) shape memory alloy (SMA) was investigated. It was found that hydrogen addition changed the microstructure of the sintered Ti-13Nb-(0-31)H (at pct) alloys gradually from α + β dual phase to single β phase due to the lowered transition temperature of β phase to α phase by hydrogen action. The reduction of α phase precipitation in the alloy reduced the amount of Nb squeezed out from the Nb-depleted α phase, and consequently decreased the mean Nb content in the β phase. Thus, the Ms temperature of Ti-13Nb alloy was successfully increased from lower temperature to near room temperature, which consequently enhanced the recoverable strain of the alloy by easier martensitic transformation. The sintered Ti-13Nb-18H alloy presented a Ms temperature of 22 °C and a remarkable recoverable strain of 3.9 pct at room temperature, which is the highest value ever reported in the sintered Ti-Nb based SMAs. Meanwhile, the Ti-13Nb-18H alloy exhibited a fracture strain of 23.1 pct and a fracture strength of 1321 MPa, both better than that of the Ti-13Nb alloy, which was attributed to the hydrogen atoms in the alloy which caused solid solution strengthening and also increased the content of the β phase with higher plasticity.



The authors would like to acknowledge the financial support from Guangdong Provincial Science and Technology Projects (2016A030311012) and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province.


  1. 1.
    M. Semlitsch, F. Staub and H. Weber: Biomed. Tech., 1985, vol. 30, pp. 334-39.CrossRefGoogle Scholar
  2. 2.
    M. Es-Souni, M. Es-Souni and H. Fischer-Brandies: Anal. Bioanal. Chem., 2005, vol. 38, pp. 557-67.CrossRefGoogle Scholar
  3. 3.
    E. Denkhaus and K. Salnikow: Crit. Rev. Oncol. Hematol., 2002, vol. 42, pp. 35-56.CrossRefGoogle Scholar
  4. 4.
    A. Biesiekierski, J. Wang, M.A.H. Gepreel and C. Wen: Acta Biomater., 2012, vol. 8, pp. 1661-69.CrossRefGoogle Scholar
  5. 5.
    A.R.G. Brown, D. Clark, J. Eastabrook and K.S.Jepsom: Nature., 1964, vol. 201, pp. 914-15.CrossRefGoogle Scholar
  6. 6.
    H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda and S. Miyazaki: Acta. Mater., 2006, vol. 54, pp. 2419-29.CrossRefGoogle Scholar
  7. 7.
    D.J. Lin, C.C. Chuang, J.H.C. Lin, J.W. Lee, C.P. Ju and H.S. Yin: Biomaterials., 2007, vol. 28, pp. 2582-89.CrossRefGoogle Scholar
  8. 8.
    W.F. Ho: J. Alloy. Compd., 2008, vol. 464, pp. 580-83.CrossRefGoogle Scholar
  9. 9.
    J.I. Kim, H.Y. Kim, T. Inamura, H. Hosoda and S. Miyazaki: Mater. Sci. Eng. A., 2005, vol. 403, pp. 334-39.CrossRefGoogle Scholar
  10. 10.
    J.Y. Rho, T.Y. Tsui and G.M. Pharr: Biomaterials., 1997, vol. 18, pp. 1325-30.CrossRefGoogle Scholar
  11. 11.
    V. Karageorgiou and D. Kaplan: Biomaterials., 2005, vol. 26, pp. 5474-91.CrossRefGoogle Scholar
  12. 12.
    J. Shen, B. Chen, J. Umeda and K. Kondoh: Mater. Sci. Eng. A., 2018, vol. 716, pp. 1-10.CrossRefGoogle Scholar
  13. 13.
    V. Brailovski, S. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. Petrzhik and M.Filonov: Mater. Sci. Eng. C., 2011, vol. 31, pp. 643-57.CrossRefGoogle Scholar
  14. 14.
    J.I. Kim II, H.Y. Kim, H. Hosoda, S. Miyazaki, H.Y. Kim, H. Hosoda and S. Miyazaki: Mater. Trans., 2005, vol. 46, pp. 852-57.CrossRefGoogle Scholar
  15. 15.
    M. Lai, Y. Gao, B. Yuan and M. Zhu: Mater. Des., 2014, vol. 60, pp. 193-97.CrossRefGoogle Scholar
  16. 16.
    Yuan B, Yang B, Gao Y, Lai M, Chen XH: Mater. Des., 2016, 92, 978-982.CrossRefGoogle Scholar
  17. 17.
    J. Wu, H. Li, B. Yuan and Y. Gao: J. Mech. Behav. Biomed. Mater., 2017, vol. 75, pp. 574-80.CrossRefGoogle Scholar
  18. 18.
    M. Lai, Y. Gao, B. Yuan and M. Zhu: Mater. Des., 2015, vol. 87, pp. 466-72.CrossRefGoogle Scholar
  19. 19.
    S. Miyazaki, H.Y. Kim and H. Hosoda: Mater. Sci. Eng. A., 2006, vol. 438, pp. 18-24.CrossRefGoogle Scholar
  20. 20.
    D.L. Moffat and U.R. Kattner: Metall. Mater. Trans. A, 1988, vol. 19, pp. 2389-97.CrossRefGoogle Scholar
  21. 21.
    A. Martin and F.D. Manchester: Bull. Alloy. Phase. Diagrams., 1987, 8, 30-42.CrossRefGoogle Scholar
  22. 22.
    [22] H. Okamoto: J. Phase: Equilib. Diffus., 2013, vol. 34, pp. 163-64.Google Scholar
  23. 23.
    B.G. Yuan: Microstructure and property of hydrogenated titanium alloy, Metallurgical Industry Press, Bei Jing, 2015, pp. 6.Google Scholar
  24. 24.
    W.H. Bragg and W.L. Bragg: Proc. R. Soc. A., 1913, vol. 88, pp. 428-38.CrossRefGoogle Scholar
  25. 25.
    Hin A A: Izv. Vyssh. Uchebn. Zaved. Tsvetn., 1987, vol. 1, pp. 96-101.Google Scholar
  26. 26.
    Q. Chen and G.A. Thouas: Mater. Sci. Eng. R., 2015, vol. 87, pp. 1-57.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouP.R. China

Personalised recommendations