Advertisement

Effects of Cr Concentration on Cementite Coarsening in Ultrahigh Carbon Steel

Abstract

Ultrahigh carbon steels (UHCS) containing 1 wt pct Cr (1Cr UHCS) were heat treated at 1073 K, 1173 K, or 1243 K (800 °C, 900 °C, or 970 °C) for durations of 5 minutes up to 24 hours to study cementite coarsening. Results were compared to a previous study on coarsening of a UHCS with 4 wt pct Cr (4Cr UHCS) and significantly different behavior was observed. In the heat-treated 1Cr UHCS, particles clustered in zones that were tens of microns near branches of the cementite network. The opposite trend was observed in the 4Cr UHCS, in which the regions within a few microns near the cementite network were entirely denuded of particles. Causes for differences in coarsening behavior in 1Cr and 4Cr UHCS are discussed.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    United States Patent, 3951697, 1976.

  2. 2.

    B. Walser and O.D. Sherby: Metall. Trans. A, 1979, vol. 10, pp. 1461–71.

  3. 3.

    D. Lesuer, C. Syn, and O. Sherby: in SAE Technical Paper 960314, SAE International Congress and Exposition, 1996.

  4. 4.

    D.R. Lesuer, C.K. Syn, A. Goldberg, J. Wadsworth, and O.D. Sherby: JOM, 1993, vol. 45, pp. 40–46.

  5. 5.

    I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

  6. 6.

    C. Wagner: Zeitschrift für Elektrochemie, 1961, vol. 65, pp. 581–91.

  7. 7.

    M. V. Speight: Acta Metall., 1968, vol. 16, pp. 133–35.

  8. 8.

    A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 601–09.

  9. 9.

    B.A. Lindsley and A.R. Marder: Acta Mater., 1998, vol. 46, pp. 341–51.

  10. 10.

    S.P. Rawal and J. Gurland: Metall. Trans. A, 1977, vol. 8, pp. 691–98.

  11. 11.

    C.K. Syn, D.R. Lesuer, and O.D. Sherby: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1481–93.

  12. 12.

    J.D. Verhoeven and E.D. Gibson: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1181–89.

  13. 13.

    Gene E. Lee, ed.: Rolls for the Metalworking Industries, Iron and Steel Society, Warrendale, PA, 2002.

  14. 14.

    M.D. Hecht, Y.N. Picard, and B.A. Webler: Metall. Mater. Trans. A 2017, 48, 2320–35.

  15. 15.

    A.A. Vasilyev, S.F. Sokolov, N.G. Kolbasnikov, and D.F. Sokolov: Phys. Solid State, 2011, vol. 53, pp. 2194–2200.

  16. 16.

    G.H. Zhang, J.Y. Chae, K.H. Kim, and D.W. Suh: Mater. Charact., 2013, vol. 81, pp. 56–67.

  17. 17.

    P. Deb and M.C. Chaturvedi: Metallography, 1982, vol. 354, pp. 341–54.

  18. 18.

    A.R. Marder and B.L. Bramfitt: Metall. Trans. A, 1975, vol. 6, pp. 2009–14.

  19. 19.

    W.J. Nam and C.M. Bae: Scr. Mater., 1999, vol. 41, pp. 313–18.

  20. 20.

    A.M. Cree, R.G. Faulkner, and A.T. Lyne: Mater. Sci. Technol., 1995, vol. 11, pp. 566–71.

  21. 21.

    Z.Q. Lv, S.H. Sun, Z.H. Wang, M.G. Qv, P. Jiang, and W.T. Fu: Mater. Sci. Eng. A, 2008, vol. 489, pp. 107–12.

  22. 22.

    R.V. Day and J. Barford: Nature, 1968, vol. 217, pp. 1145–46.

  23. 23.

    F.S. Birks, N. Meier, G.H. Pettit: Introduction to the High Temperature Oxidation of Metals, 2nd edn., Cambridge University Press, Cambridge 2006.

  24. 24.

    G.F. Voort and A. Roósz: Metallography, 1984, 17, 1–17.

  25. 25.

    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.

  26. 26.

    S.A. Saltikov: Proc. 2nd Int. Cong. Stereol., H. Elias, ed., Springer-Verlag New York Inc., Chicago, 1967, pp. 163–73.

  27. 27.

    D.L. Sahagian and A.A. Proussevitch: J. Volcanol. Geotherm. Res., 1998, vol. 84, pp. 173–96.

  28. 28.

    J. Krawczyk, R. Dziurka, and E. Rożniata: Metall. Foundry Eng., 2008, vol. 34, p. 125.

  29. 29.

    M.J. Aziz: Defect Diffus. Forum, 1998, vol. 153–155, pp. 1–10.

  30. 30.

    F.S. Buffington and M. Cohen: J. Met., 1952, vol. 4, pp. 859–60.

  31. 31.

    T.L. Christiansen and M.A.J. Somers: Defect Diffus. Forum, 2010, vol. 297–301, pp. 1408–13.

Download references

Acknowledgments

The authors appreciate Miller Centrifugal Casting for providing the mill roll parts for this study. This project was financed in part by a Grant from the Commonwealth of Pennsylvania Department of Community and Economic Development (DCED), Developed in PA Program (D2PA). Funding support is also acknowledged from the National Science Foundation, CMMI Award No. 1436064. The authors acknowledge use of the Materials Characterization Facility at Carnegie Mellon University supported by Grant MCF-677785 as well as helpful discussions with Professor Chris Pistorius of Carnegie Mellon University.

Author information

Correspondence to Bryan A. Webler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 24, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hecht, M.D., Picard, Y.N. & Webler, B.A. Effects of Cr Concentration on Cementite Coarsening in Ultrahigh Carbon Steel. Metall and Mat Trans A 50, 4779–4790 (2019). https://doi.org/10.1007/s11661-019-05403-w

Download citation