Advertisement

Effect of Different Cooling Media After Solid Solution on the Microstructure and Yield Strength in a Ni-Al Alloy During Aging: Experimental Measurement and Computational Modeling

  • Yan Lin
  • Guodong Li
  • Ming Wei
  • Jianbao Gao
  • Lijun ZhangEmail author
Article
  • 13 Downloads

Abstract

In this paper, the effect of different cooling media, i.e., water quenching, air cooling and furnace cooling, after solid solution treatment on the microstructure and yield strength of Ni-15.9Al at. pct alloy during aging at 800 °C was first experimentally investigated. It was found that the morphologies and the particle sizes of γ′ precipitates as well as the yield strength of the target alloys during aging were strongly affected by the cooling media after solid solution. The yield strengths of the target alloys after aging with water quenching and air cooling after solid solution are similar, and higher than that with furnace cooling. By further considering the cost and environment factors, the air cooling after solid solution treatment was thus proposed for industry alloys. Meanwhile, a quantitative simulation of the microstructure evolution in the target alloy during aging was realized by means of phase-field modeling coupling with CALPHAD thermodynamic and atomic mobility descriptions. Moreover, the extracted experimental microstructure of the Ni-15.9Al at. pct alloy with air cooling after solid solution was inputted as the initial microstructure of phase-field simulation. Subsequently, the microstructural features obtained from both phase-field simulations and experiments were imported into the strengthening models to predict the evolution of the total yield strengths during aging. The model-predicted total yield strengths in the Ni-15.9Al at. pct alloy were found to be in the excellent agreement with the experimental results from the tensile tests.

Notes

Acknowledgments

The work was supported by the Youth Talent Project of Innovation-driven Plan at Central South University (Grant No. 2019CX027), and the Hunan Provincial Science and Technology Program of China (Grant No. 2017RS3002)—Huxiang Youth Talent Plan. Ming Wei acknowledges the financial support from the program of China Scholarship Council (No. 201706370128).

References

  1. 1.
    M.V. Nathal and L.J. Ebert: Metall. Trans. A, 1985, vol. 16, pp. 427-39.CrossRefGoogle Scholar
  2. 2.
    R.C. Reed, The Superalloy Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  3. 3.
    Z.W. Wei, C.K. Liu, Y.L. Gu and C.H. Tao: J. Aeronaut. Mater., 2015, vol. 35, pp. 70-74. (in Chinese)Google Scholar
  4. 4.
    D.M. Collins and H.J. Stone: Int. J. Plast., 2014, vol. 54, pp. 96-112.CrossRefGoogle Scholar
  5. 5.
    C. Li, R. White, X.Y. Fang, M. Weaver and Y.B. Guo: Mater. Sci. Eng. A, 2017, vol. 705, pp. 20-31.CrossRefGoogle Scholar
  6. 6.
    M. Rahimian, S. Milenkovic and I. Sabirov: J. Alloys Compd., 2013, vol. 550, pp. 339-344.CrossRefGoogle Scholar
  7. 7.
    G.E. Fuchs: Mater. Sci. Eng. A, 2001, vol. 300, pp. 52-60.CrossRefGoogle Scholar
  8. 8.
    J.T. Guo, Materials Science and Engineering for Superalloys, first ed., Science press, Beijing, 2008.Google Scholar
  9. 9.
    J. Yu, X. Sun, N. Zhao, T. Jin, H. Guan and Z. Hu: Mater. Sci. Eng. A, 2007, vol. 460, pp. 420-27.CrossRefGoogle Scholar
  10. 10.
    G.B. Olson: Science, 1997, vol. 277, pp. 1237- 42.CrossRefGoogle Scholar
  11. 11.
    D.L. McDowell and G.B. Olson: Sci. Model. Simul., 2008, vol. 15, pp. 207-40.CrossRefGoogle Scholar
  12. 12.
    R.C. Reed, T. Tao and N. Warnken: Acta Mater., 2009, vol. 57, pp. 5898-13.CrossRefGoogle Scholar
  13. 13.
    L. Zhang and Y. Du: J. Phase Equilib. Diffus., 2016, vol. 37, pp: 259-60.CrossRefGoogle Scholar
  14. 14.
    N. Warnken, D. Ma, A. Drevermann, R.C. Reed, S.G. Fries and I. Steinbach: Acta Mater., 2009, vol. 57, pp. 5862-75.CrossRefGoogle Scholar
  15. 15.
    15] D. Cao, N. Ta and L. Zhang: Prog. Nat. Sci., 2017, vol. 27, pp. 678-86.CrossRefGoogle Scholar
  16. 16.
    N. Ta, L. Zhang and Y. Du: Metall. Mater. Trans A, 2014, vol.45, pp. 1787-802.CrossRefGoogle Scholar
  17. 17.
    L. Zhang, I. Steinbach and Y. Du: Int. J. Mater. Res., 2011, vol. 102, pp. 371-80.CrossRefGoogle Scholar
  18. 18.
    N. Ta, L. Zhang, Y. Tang, W.M. Chen and Y. Du: Surf. Coat. Technol., 2015, vol. 261, pp. 364-74.CrossRefGoogle Scholar
  19. 19.
    A.J. Ardell: Metall. Trans. A., 1985, vol.16, pp. 2131-65.CrossRefGoogle Scholar
  20. 20.
    B. Reppich: Acta Mater., 1982, vol. 30, pp: 87-94.CrossRefGoogle Scholar
  21. 21.
    L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Elsevier, Amesterdam, The Netherlands, 1971, pp. 9-135.Google Scholar
  22. 22.
    MICRESS: The MICRostructure Evolution Simulation Software. www.micress.de.
  23. 23.
    I. Steinbach, Model. Simul. Mater. Sci. Eng., 2009, vol. 17, pp. 073001-31.CrossRefGoogle Scholar
  24. 24.
    M.K. Rajendran, O. Shchyglo, and I. Steinbach: MATEC Web of Conferences, EDP Sciences, 2014, vol. 14, pp. 11001.Google Scholar
  25. 25.
    Y. Du and N. Clavaguera: J. Alloys Compd., 1996, vol. 247, pp. 20–30.CrossRefGoogle Scholar
  26. 26.
    L. Zhang, Y. Du, Q. Chen, and I. Steinbach: Int. J. Mater. Res., 2010, vol. 101, pp. 1461–75.CrossRefGoogle Scholar
  27. 27.
    J. Gao, M. Wei, L. Zhang, Y. Du, Z.M. Liu and B.Y. Huang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 944-52.Google Scholar
  28. 28.
    Y.H. Wen, B. Wang, J.P. Simmons and Y. Wang: Acta Mater., 2006, vol. 54, pp. 2087-99.CrossRefGoogle Scholar
  29. 29.
    M.R. Ahmadi, E. Povoden-Karadeniz, L. Whitmore, M. Stockinger, A. Falahati and E. Kozeschnik: Mater. Sci. Eng. A, 2014, vol. 608, pp. 114-22.CrossRefGoogle Scholar
  30. 30.
    E.O. Hall: Proc. Phys. Soc. London B, 1951, vol. 64, pp. 747-53.CrossRefGoogle Scholar
  31. 31.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.Google Scholar
  32. 32.
    F. Wallow and E. Nembach: Scripta Metall., 1996, vol. 34, pp. 499–505.CrossRefGoogle Scholar
  33. 33.
    M.Z. Butt and P. Feltham: J. Mater. Sci., 1993, vol. 28, pp. 2557-76.CrossRefGoogle Scholar
  34. 34.
    C.T. Sim and W.C. Hagel: The Super alloy, Wiley, New York, 1973.Google Scholar
  35. 35.
    R. Labush and R. B. Schwarz: J. Appl. Phys.,1978, vol. 49, pp. 5174–87.CrossRefGoogle Scholar
  36. 36.
    S.K. Kar and S.K. Sondhi: Mater. Sci. Eng. A, 2014, vol. 601, pp. 97-105.CrossRefGoogle Scholar
  37. 37.
    W. Hüther and B. Reppich: Mater. Sci. Eng., 1979, vol.39, pp. 247-59.CrossRefGoogle Scholar
  38. 38.
    U.F. Kocks: in Proc. 5th. Conf. on the Strength of Metals and Alloys, Aachen, 1979, vol. 1, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon, Oxford, 1980, p. 1661.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yan Lin
    • 1
  • Guodong Li
    • 1
  • Ming Wei
    • 1
  • Jianbao Gao
    • 1
  • Lijun Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaP.R. China

Personalised recommendations