Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4743–4749 | Cite as

Correlation Between Plasticity and Atomic Structure Evolution of a Rejuvenated Bulk Metallic Glass

  • Majid SamavatianEmail author
  • Reza GholamipourEmail author
  • Ahmad Ali Amadeh
  • Shamsoddin Mirdamadi


This article aims to establish a relation between the excitation of atomic structure, namely rejuvenation, and plasticity behavior of a Zr-based bulk metallic glass (BMG). The synchrotron X-ray diffraction (XRD) results showed that the cryothermal treatment leads to rejuvenation of the material, which is manifested by the structural disordering and the rearrangement of atomic clusters. It was also revealed that the rejuvenated structure provides more potential sites for shear-banding events during compressive loading. Hence, the homogeneous plasticity improves in the rejuvenated samples, which is recognized by a self-organized critical state of serrations in the stress–strain curves and high population of shear bands on the lateral surface of samples. On the other hand, a high energy barrier for shear transitions in as-cast specimens led to a semi-brittle failure with low plastic deformation. In general, with the increase in the number of cryothermal cycles, the rejuvenation as well as the non-localized deformation enhances in the BMG.



The synchrotron X-ray experiments were performed at BL04 beamline at the ALBA Synchrotron with the collaboration of the ALBA staff.


  1. 1.
    E. Ma and J. Ding: Materials Today, 2016, vol. 19, pp. 568-579.CrossRefGoogle Scholar
  2. 2.
    Y. Sun, A. Concustell and L. Greer: Nature Reviews Materials, 2016, 1, 16039.CrossRefGoogle Scholar
  3. 3.
    T. P. Ge, C. Wang, J. Tan, T. Ma, X. H. Yu, C. Q. Jin, W. H. Wang and H. Y. Bai: Journal of Applied Physics, 2017, 121, 205109.CrossRefGoogle Scholar
  4. 4.
    M. Liang, Y. Zhu, Z. Ji, J. Fu and C. Zheng: Journal of Materials Processing Technology, 2018, vol.251, pp. 47-53.CrossRefGoogle Scholar
  5. 5.
    Y. Wu, D. Ma, Q.K. Li, A.D. Stoica, W.L. Song, H. Wang, X.J. Liu, G.M. Stoica, G.Y. Wang, K. An, X.L. Wang, M. Li and Z.P. Lu: Acta Materialia, 2017, 124, 478-488CrossRefGoogle Scholar
  6. 6.
    D. Houdoux, T. Nguyen, A. Amon and J. Crassous: Phys. Rev. E, 2018, 98, 22905.CrossRefGoogle Scholar
  7. 7.
    W. Guo, R. Yamada, J. Saida, S. Lü and S. Wu: Journal of Non-Crystalline Solids, 2018, vol. 498, pp. 8-13.CrossRefGoogle Scholar
  8. 8.
    J. Pan, Y. Wang, Q. Guo, D. Zhang, A.L. Greer and Y. Li: Nat. Commun., 2018, 9, 560.CrossRefGoogle Scholar
  9. 9.
    Y. Tong, W. Dmowski, H. Bei, Y. Yokoyama and T. Egami: Acta Materialia, 2018, vol. 148, pp. 384-390.CrossRefGoogle Scholar
  10. 10.
    S. Ketov, Y. Sun, S. Nachum, Z. Lu, A. Checchi, A. Beraldin, H. Bai, W. H. Wang, D. Louzguine-Luzgin, M. A. Carpenter and A. L. Greer: Nature, 2015, vol. 524, pp. 200-203.CrossRefGoogle Scholar
  11. 11.
    T. Hufnagel: Nature Materials, 2015, vol. 14, pp. 867-868.CrossRefGoogle Scholar
  12. 12.
    B. Shang, P. Guan and J. L. Barrat: J. Phys., 2018, 1, 1.Google Scholar
  13. 13.
    N. V. Priezjev: Journal of Non-Crystalline Solids, 2019, vol. 503, pp. 131-138.CrossRefGoogle Scholar
  14. 14.
    N. V. Priezjev, (2018).
  15. 15.
    W. Guo, R. Yamada and J. Saida: Intermetallics, 2018, vol. 93, pp. 141-147.CrossRefGoogle Scholar
  16. 16.
    W. Guo, J. Saida, M. Zhao, S. Lü and S. Wu: Metallurgical and Materials Transactions A, 2019, vol. 50, pp. 1125-1129.CrossRefGoogle Scholar
  17. 17.
    W. Song, X. Meng, Y. Wu, D. Cao, H. Wang, X. Liu, X. Wang and Z. Lu: Science Bulletin, 2018, vol. 63, pp. 840-844.CrossRefGoogle Scholar
  18. 18.
    S. Ketov, A. Trifonov, Y. Ivanov, A. Churyumov, A. Lubenchenko, A. Batrakov, J. Jiang, D. Louzguine-Luzgin, J. Eckert, J. Orava and A. Greer: NPG Asia Materials, 2018, vol.10, pp. 137-145.CrossRefGoogle Scholar
  19. 19.
    T.J. Lei, L. DaCosta, M. Liu, W.H. Wang, Y.H. Sun, A.L. Greer and M. Atzmon: Acta Mater., 2019, 164, 165-170.CrossRefGoogle Scholar
  20. 20.
    W. Guo, J. Saida, M. Zhao, S. Lü, S. Wu: Materials Science & Engineering A, 2019, vol. 759, pp. 59-64.CrossRefGoogle Scholar
  21. 21.
    W. Guo, Y Shao, J. Saida, M. Zhao, S. Lü, S. Wu: Journal of Alloys and Compounds, 2019, vol. 795, pp. 314-318.CrossRefGoogle Scholar
  22. 22.
    M. Samavatian, R. Gholamipour, A. Amadeh and S. Mirdamadi: Journal of Non-crystalline Solids, 2019, vol. 506, pp. 39-45.CrossRefGoogle Scholar
  23. 23.
    A. Cuesta, R. U. Ichikawa, D. Londono-Zuluaga, A. G. De la Torre, I. Santacruz, X. Turrillas and M. A.G. Aranda: Cement and Concrete Research, 2017, vol. 96, pp. 1-12.CrossRefGoogle Scholar
  24. 24.
    F. Fauth, I. Peral, C. Popescu and M. Knapp: Powder Diffraction, 2013, vol. 28, pp. 5360-5370.CrossRefGoogle Scholar
  25. 25.
    P. Juhás, T. Davis, C. Farrow and S. Billinge: Journal of Applied Crystallography, 2013, vol. 46, pp. 560-566.CrossRefGoogle Scholar
  26. 26.
    M. Stoica,, J. Das, J. Bednarcik, H. Franz, N. Mattern, W. H. Wang and J. Eckert: J. Appl. Phys. 2008, 104, 13522.CrossRefGoogle Scholar
  27. 27.
    M. Samavatian, R. Gholamipour, V. Samavatian, F, Farahani: Mater. Res. Express, 2019, 6, 65202.CrossRefGoogle Scholar
  28. 28.
    J. Zhao, A. Inoue, C.T. Liu, P.K. Liaw, X. Shen, S. Pan, G. Chen and C. Fan: Scripta Materialia, 2016, vol. 117, pp. 64-67.CrossRefGoogle Scholar
  29. 29.
    A. L. Greer and Y. H. Sun: Philosophical Magazine, 2016, vol. 96, pp. 1643-1663.CrossRefGoogle Scholar
  30. 30.
    X.F. Zhang, S.P. Pan, J.W. Qiao and A.D. Lan: Computational Materials Science, 2017, vol. 128, pp. 343-347.CrossRefGoogle Scholar
  31. 31.
    S. Lee, C. Lee, J. Lee, H. Kim, Y. Shibutani, E. Fleury and M. Falk: Appl. Phys. Lett., 2008, 92, 151906.CrossRefGoogle Scholar
  32. 32.
    J.C. Qiao, Y. Yao, J.M. Pelletier and L.M. Keer: International Journal of Plasticity, 2016, vol. 82, pp. 62-75.CrossRefGoogle Scholar
  33. 33.
    X. Tong, G. Wang, J. Yi, J.L. Ren, S. Pauly, Y.L. Gao, Q.J. Zhai, N. Mattern, K.A. Dahmen, P.K. Liaw and J. Eckert: International Journal of Plasticity, 2016, vol. 77, pp. 141-155.CrossRefGoogle Scholar
  34. 34.
    B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao and W. H. Wang: Phys. Rev. Lett., 2010, 105, 35501.CrossRefGoogle Scholar
  35. 35.
    M. Samavatian, R. Gholamipour, A. Amadeh and S. Mirdamadi: Materials Science and Engineering: A, 2019, vol. 753, pp. 218-223.CrossRefGoogle Scholar
  36. 36.
    Z. Q. Zhang, K. K. Song, B. A. Sun, L. Wang, W. C. Cui, Y. S. Qin, X. L. Han, Q. S. Xue, C. X. Peng, B. Sarac, F. Spieckermann, I. Kaban and J. Eckert: Philosophical Magazine, 2018, vol. 98, pp. 1744-1764.CrossRefGoogle Scholar
  37. 37.
    B. Shi, S. Luan and P. Jin: Journal of Non-Crystalline Solids, 2018, vol. 482, pp. 126-131.CrossRefGoogle Scholar
  38. 38.
    Y. Zhao, A. Inoue, C. Chang, J. Liu, B. Shen, X. Wang and R. Li: Sci. Rep., 2014, 4, 5733.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Advanced Materials and Renewable EnergyIranian Research Organization for Science and Technology (IROST)TehranIran
  3. 3.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran
  4. 4.School of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations