Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4827–4838 | Cite as

Preparation of Ultrafine W-10 Wt Pct Cu Composite Powders and Their Corresponding Sintered Compacts

  • Jun-Kai Liu
  • Guo-Hua ZhangEmail author
  • Guo-Dong Sun
Article

Abstract

We propose a process to produce ultrafine W-10 wt pct Cu composite powders by reducing the mixtures of copper tungstate (CuWO4) and tungsten trioxide (WO3) (from the calcination of a mixture of ammonium paratungstate and copper nitrate trihydrate) with carbon black and hydrogen. First, ultrafine pre-reduced tungsten-copper (W-Cu) powders containing a small amount of WO2 were produced by reducing mixtures of CuWO4 and WO3 with insufficient carbon black; then the obtained products were further reduced by hydrogen to remove the residual oxygen. This method provides a simple and low-cost route to prepare ultrafine W-10 wt pct Cu composite powders. The composite powders were sintered at different temperatures [1323 K (1050 °C), 1373 K (1100 °C), 1423 K (1150 °C), 1473 K (1200 °C), and 1523 K (1250 °C)] for 3 hours. A maximum densification of the obtained compact was achieved at a sintering temperature of 1523 K (1250 °C), with a relative density, Vickers hardness and thermal conductivity of the W-10 wt pct Cu composites of 97.8 pct, 365 HV and 165 W/m K, respectively.

Notes

References

  1. 1.
    [1] S.H. Lee, S.Y. Kwon, and H.J. Ham, Thermochim. Acta, 2012, vol. 542, pp. 2-5.Google Scholar
  2. 2.
    [2] M. Ardestani, H. Arabi, H.R. Rezaie, and H. Razavizadeh, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 796-800.Google Scholar
  3. 3.
    [3] P. Chen, G. Luo, Q. Shen, M. Li, and L. Zhang, Mater. Design, 2013, vol. 46, pp. 101-05.Google Scholar
  4. 4.
    [4] Y.D. Kim, N.L. Oh, ST Oh, and I.H. Moon, Mater. Lett., 2001, vol. 51, pp. 420-24.Google Scholar
  5. 5.
    [5] J. Korab, P.Štefánik, Š. Kavecký, P. Šebo, and G. Korb, Compos. Part A-Appl. S., 2002, vol. 33, pp. 577-81.Google Scholar
  6. 6.
    [6] M. Ahangarkani, K.Z. Madar, S. Borji, and Z. Valefi, Int. J. Refract. Met. Hard Mater., 2017, vol. 67, pp. 115-24.Google Scholar
  7. 7.
    [7] W. Chen, L. Dong, H. Zhang, J. Song, N. Deng, and J. Wang, Mater. Lett., 2017, vol. 205, pp. 198-201.Google Scholar
  8. 8.
    [8] E. Tejado, A.V. Müller, J.H. You, and J.Y. Pastor, J. Nucl. Mater., 2018, vol. 498, pp. 468-75.Google Scholar
  9. 9.
    [9] L.J. Kecskes, B.R. Klotz, K.C. Cho, R.J. Dowding, and M.D. Trexler, Metall. Mater. Trans. A, 2001, vol. 32, pp. 2885-93.Google Scholar
  10. 10.
    Ho PW, Li QF, Fuh JYH (2008) Mater Sci Eng A 485:657-63Google Scholar
  11. 11.
    [11] A.G. Hamidi, H. Arabi, and S. Rastegari, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 538-41.Google Scholar
  12. 12.
    [12] J.L. Johnson, Int. J. Refract. Met. Hard Mater., 2015, vol. 53, pp. 80-86.Google Scholar
  13. 13.
    [13] Y. Li, J. Zhang, G. Luo, Q. Shen, and L. Zhang, Int. J. Refract. Met. Hard Mater., 2018, vol. 71, pp. 255-61.Google Scholar
  14. 14.
    [14] S.H. Hong, and B.K. Kim, Mater. Lett., 2003, vol. 57, pp. 2761-67.Google Scholar
  15. 15.
    [15] Y. Guo, H. Guo, B. Gao, X. Wang, Y. Hu, and Z. Shi, J. Alloy Compd., 2017, vol. 724, pp. 155-62.Google Scholar
  16. 16.
    [16] X. Shi, H. Yang, S. Wang, G. Shao, X. Duan, Z. Xiong, and T. Wang, Mater. Chem. Phys., 2007, vol. 104, pp. 235-39.Google Scholar
  17. 17.
    [17] G.G. Lee, G.H. Ha, and B.K. Kim, Powder Metall., 2000, vol. 43, pp. 79-82.Google Scholar
  18. 18.
    [18] D.G. Kim, K.W. Lee, S.T. Oh, and Y.D. Kim, Mater. Lett., 2004, vol. 58, pp. 1199-203.Google Scholar
  19. 19.
    [19] G. Pintsuk, I. Smid, J.E. Döring, W. Hohenauer, and J. Linke, J. Mater. Sci., 2007, vol. 42, pp. 30-39.Google Scholar
  20. 20.
    [20] J. Cheng, C. Lei, E. Xiong, Y. Jiang, and Y. Xia, J. Alloy Compd., 2006, vol. 421, pp. 146-50.Google Scholar
  21. 21.
    [21] T.H. Kim, J.H. Yu, and J.S. Lee, NanoStruct. Mater., 1997, vol. 9, pp. 213-16.Google Scholar
  22. 22.
    [22] A.K. Basu, and F.R. Sale, J. Mater. Sci., 1978, vol. 13, pp. 2703-11.Google Scholar
  23. 23.
    [23] M.H. Maneshian, and A. Simchi, J. Alloy Compd., 2008, vol. 463, pp. 153-59.Google Scholar
  24. 24.
    [24] W.T. Qiu, Y. Pang, Z. Xiao, and Z. Li, Int. J. Refract. Met. Hard Mater., 2016, vol. 61, pp. 91-97.Google Scholar
  25. 25.
    [25] S.S. Ryu, Y.D. Kim, and I.H. Moon, J. Alloy Compd., 2002, vol. 335, pp. 233-40.Google Scholar
  26. 26.
    [26] M.H. Maneshian, A. Simchi, and Z.R. Hesabi, Mat. Sci. Eng. A, 2007, vol. 445-446, pp. 86-93.Google Scholar
  27. 27.
    [27] S.N. Alam, Mat. Sci. Eng. A, 2006, vol. 433, pp. 161-68.Google Scholar
  28. 28.
    [28] A. Dolatmoradi, S. Raygan, and H. Abdizadeh, Powder Technol., 2013, vol. 233, pp. 208-14.Google Scholar
  29. 29.
    [29] S.S. Ryu, H.R. Park, Y.D. Kim, and H.S. Hong, Int. J. Refract. Met. Hard Mater., 2017. vol. 65, pp. 39-44.Google Scholar
  30. 30.
    [30] C. Li, Y. Zhou, Y. Xie, D. Zhou, and D. Zhang, J. Alloy Compd., 2018, vol. 731, pp. 537-45.Google Scholar
  31. 31.
    [31] M. Hashempour, H. Razavizadeh, H.R. Rezaie, and M.T. Salehi, Mater. Charact., 2009, vol. 60, pp. 1232-40.Google Scholar
  32. 32.
    [32] B. Sun, J. Song, Y. Yu, Z. Zhuang, M. Niu, Y. Liu, T. Zhang, and Y. Qi, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 76-79.Google Scholar
  33. 33.
    [33] A.C. Franciné, A.G.P.D. Silva, and U.U. Gomes, Powder Technol., 2003, vol. 134, pp. 123-32.Google Scholar
  34. 34.
    [34] E. Ahmadi, M. Malekzadeh, and S.K. Sadrnezhaad, Int. J. Refract. Met. Hard Mater., 2009, vol. 28, pp. 441-45.Google Scholar
  35. 35.
    [35] G.D. Sun, K.F. Wang, C.M. Song, and G.H. Zhang, Int. J. Refract. Met. Hard Mater., 2019, vol. 78, pp. 100-06.Google Scholar
  36. 36.
    [36] C. Liang, F. Tian, Z. Wei, Q. Xin, and C. Li, Nanotechnology, 2003, vol. 14, pp. 196-205.Google Scholar
  37. 37.
    [37] X.P. Ji, W.C. Cao, C.Y. Bu, K. He, Y.D. Wu, and G.H. Zhang, Int. J. Refract. Met. Hard Mater., 2019, vol. 81, pp. 955-58.Google Scholar
  38. 38.
    [38] D.S. Venables, and M.E. Brown, Thermochim. Acta, 1996, vol. 282-283, pp. 265-76.Google Scholar
  39. 39.
    [39] T. Zimmerl, W.D. Schubert, A. Bicherl, and A. Bock, Int. J. Refract. Met. Hard Mater., 2017, vol. 62, pp. 87-96.Google Scholar
  40. 40.
    [40] V.L. Boris, Thermochim. Acta, 2000, vol. 360, pp. 109-20.Google Scholar
  41. 41.
    [41] Y. Shen, J. Mater. Chem. A, 2015, vol. 3, pp. 13114-88.Google Scholar
  42. 42.
    [42] D.G. Kim, B.H. Lee, S.T. Oh, Y.D. Kim, and S.G. Kang, Mat. Sci. Eng. A, 2005, vol. 395, pp. 333-37.Google Scholar
  43. 43.
    [43] J. Cheng, P. Song, Y. Gong, Y. Cai, and Y. Xia, Mat. Sci. Eng. A, 2008, vol. 488, pp. 453-57.Google Scholar
  44. 44.
    [44] J. Fan, T. Liu, S. Zhu, and Y. Han, Int. J. Refract. Met. Hard Mater., 2012, vol. 30, pp. 33-37.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations