Correlating Hot Deformation Parameters with Microstructure Evolution During Thermomechanical Processing of Inconel 718 Alloy

  • Chirag Gupta
  • Jyoti S. Jha
  • Bhagyaraj Jayabalan
  • Rajat Gujrati
  • Alankar Alankar
  • Sushil MishraEmail author


Hot compression tests were conducted to determine the processing window for deformation of solutionized Inconel 718 over a range of high temperature and strain rate. Hot working map based on the dynamic material model was developed to establish the hot-processing regime. Maximum hot deformation efficiency within the processing regime is marked by the dynamic recrystallization, whereas an instability regime exhibits the highly deformed grains with shear bands. Further, selected deformed specimens were aged at 750 °C for 8 hours. Using electron back scattered diffraction and microhardness analyses, different microstructural properties such as grain size, twin fraction, grain average misorientation, and hardness were correlated. For deformed specimens, it was found that hardness is a function of misorientation and grain size. However, after aging treatment, hardness for all the specimens was found to lie in the range of 400 to 425 HV. Further, through transmission electron microscopy analysis, it was confirmed that deformed specimens are devoid of any precipitates while the deformed specimens followed by aging showed γ″ precipitates. Thus, the lack of correlation between the hardness and the grain size in the aged specimen was due to evolution of precipitates.



  1. 1.
    E.A. Loria: JOM, 1992, vol. 44, pp. 33–36.CrossRefGoogle Scholar
  2. 2.
    T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.CrossRefGoogle Scholar
  3. 3.
    R.C. Reed: The Superalloys Fundamentals and Applications, 1 Edn., Cambridge University Press, New York, 2006.CrossRefGoogle Scholar
  4. 4.
    M.C. Chaturvedi and Y. Han: Met. Sci., 1983, vol. 17, pp. 145–49.CrossRefGoogle Scholar
  5. 5.
    R. Cozar and A. Pineau: Metall. Trans., 1973, vol. 4, pp. 47–59.CrossRefGoogle Scholar
  6. 6.
    S. Azadian, L.-Y. Wei, and R. Warren: Mater. Charact., 2004, vol. 53, pp. 7–16.CrossRefGoogle Scholar
  7. 7.
    H. Yuan and W.C. Liu: Mater. Sci. Eng. A, 2005, vol. 408, pp. 281–89.CrossRefGoogle Scholar
  8. 8.
    A. Agnoli, M. Bernacki, R. Logé, J.-M. Franchet, J. Laigo, and N. Bozzolo: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4405–21.CrossRefGoogle Scholar
  9. 9.
    M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, and J. Calvo: Mater. Sci. Eng. A, 2016, vol. 678, pp. 137–52.CrossRefGoogle Scholar
  10. 10.
    M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Acta Metall., 1988, vol. 36, pp. 847–64.CrossRefGoogle Scholar
  11. 11.
    Y.V.R.K. Prasad and N. Ravichandran: Bull. Mater. Sci., 1991, vol. 14, pp. 1241–48.CrossRefGoogle Scholar
  12. 12.
    S. Guo, D. Li, H. Pen, Q. Guo, and J. Hu: J. Nucl. Mater., 2011, vol. 410, pp. 52–58.CrossRefGoogle Scholar
  13. 13.
    X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He: Mater. Des., 2014, vol. 57, pp. 568–77.CrossRefGoogle Scholar
  14. 14.
    Q.M. Guo, D.F. Li, and S.L. Guo: Mater. Manuf. Process., 2012, vol. 27, pp. 990–95.CrossRefGoogle Scholar
  15. 15.
    A. Nowotnik: Superalloys 2008 (Eleventh International Symposium), TMS, 2008, pp. 709–17.Google Scholar
  16. 16.
    M.C. Somani, K. Muraleedharan, N.C. Birla, V. Singh, and Y.V.R.K. Prasad: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1693–702.CrossRefGoogle Scholar
  17. 17.
    P.J. Wray: J. Appl. Phys., 1969, vol. 40, pp. 4018–29.CrossRefGoogle Scholar
  18. 18.
    R. Raj: Metall. Trans. A, 1981, vol. 12, pp. 1089–97.CrossRefGoogle Scholar
  19. 19.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker: Metall. Trans. A, 1984, vol. 15, pp. 1883–92.CrossRefGoogle Scholar
  20. 20.
    S.V.S. NarayanaMurty, M.S. Sarma, and B.N. Rao: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1581–82.CrossRefGoogle Scholar
  21. 21.
    J.C. Malas and V. Seetharaman: JOM, 1992, vol. 44, pp. 8–13.CrossRefGoogle Scholar
  22. 22.
    S.L. Semiatin and G.D. Lahoti: Metall. Trans. A, 1981, vol. 12, pp. 1705–17.CrossRefGoogle Scholar
  23. 23.
    F. Montheillet, J.J. Jonas, and K.W. Neale: Metall. Mater. Trans. A, 1996, vol. 27, pp. 232–35.CrossRefGoogle Scholar
  24. 24.
    X. Ma, W. Zeng, K. Wang, Y. Lai, and Y. Zhou: Mater. Sci. Eng. A, 2012, vol. 550, pp. 131–37.CrossRefGoogle Scholar
  25. 25.
    Y.V.R.K. Prasad, K. P. Rao, and S.Sasidhar: Hot Working Guide: A Compendium of Processing Maps, 2nd ed., ASM International, 2015.Google Scholar
  26. 26.
    F. Sui, L. Xu, L. Chen, and X. Liu: J. Mater. Process. Technol., 2011, vol. 211, pp. 433–40.CrossRefGoogle Scholar
  27. 27.
    S. Medeiros, Y.V.R. Prasad, W. Frazier, and R. Srinivasan: Mater. Sci. Eng. A, 2000, vol. 293, pp. 198–207.CrossRefGoogle Scholar
  28. 28.
    N. Srinivasan and Y.V.R.K. Prasad: Metall. Mater. Trans. A, 1994, vol. 25, pp. 2275–84.CrossRefGoogle Scholar
  29. 29.
    D. Wen, Y.C. Lin, H.-B. Li, X. Chen, J. Deng, and L. Li: Mater. Sci. Eng. A, 2014, vol. 591, pp. 183–92.CrossRefGoogle Scholar
  30. 30.
    H. Zhang, K. Zhang, Z. Lu, C. Zhao, and X. Yang: Mater. Sci. Eng. A, 2014, vol. 604, pp. 1–8.CrossRefGoogle Scholar
  31. 31.
    Y.C. Lin, X.-M. Chen, D. Wen, and M. Chen: Comput. Mater. Sci., 2014, vol. 83, pp. 282–89.CrossRefGoogle Scholar
  32. 32.
    X.-M. Chen, Y.C. Lin, M. Chen, H. Li, D. Wen, J. Zhang, and M. He: Mater. Des., 2015, vol. 77, pp. 41–49.CrossRefGoogle Scholar
  33. 33.
    H.Y. Zhang, S.H. Zhang, M. Cheng, and Z.X. Li: Mater. Charact., 2010, vol. 61, pp. 49–53.CrossRefGoogle Scholar
  34. 34.
    A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado: J. Mater. Process. Technol., 2006, vol. 177, pp. 469–72.CrossRefGoogle Scholar
  35. 35.
    G.A. Rao, M. Kumar, M. Srinivas, and D.S. Sarma: Mater. Sci. Eng. A, 2003, vol. 355, pp. 114–25.CrossRefGoogle Scholar
  36. 36.
    A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A.K. Koul: Mater. Des., 2013, vol. 52, pp. 791–800.CrossRefGoogle Scholar
  37. 37.
    F. Theska, A. Stanojevic, B. Oberwinkler, S.P. Ringer, and S. Primig: Acta Mater., 2018, vol. 156, pp. 116–24.CrossRefGoogle Scholar
  38. 38.
    N. Bozzolo, N. Souaï, and R.E. Logé: Acta Mater., 2012, vol. 60, pp. 5056–66.CrossRefGoogle Scholar
  39. 39.
    T. Al-Samman and G. Gottstein: Mater. Sci. Eng. A, 2008, vol. 490, pp. 411–20.CrossRefGoogle Scholar
  40. 40.
    Y. Wang, W.Z. Shao, L. Zhen, and B.Y. Zhang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3218–27.CrossRefGoogle Scholar
  41. 41.
    H. Jiang, J. Dong, M. Zhang, L. Zheng, and Z. Yao: J. Alloys Compd., 2015, vol. 647, pp. 338–50.CrossRefGoogle Scholar
  42. 42.
    C.A. Dandre, S.M. Roberts, R.W. Evans, and R.C. Reed: Mater. Sci. Technol., 2000, vol. 16, pp. 14–25.CrossRefGoogle Scholar
  43. 43.
    S.I. Wright, M.M. Nowell, S.P. Lindeman, P.P. Camus, M. De Graef, and M.A. Jackson: Ultramicroscopy, 2015, vol. 159, pp. 81–94.CrossRefGoogle Scholar
  44. 44.
    M. Zouari, N. Bozzolo, and R.E. Loge: Mater. Sci. Eng. A, 2016, vol. 655, pp. 408–24.CrossRefGoogle Scholar
  45. 45.
    R. Gujrati, C. Gupta, J.S. Jha, S. Mishra, and A. Alankar: Mater. Sci. Eng. A, 2019, vol. 744, pp. 638–51.CrossRefGoogle Scholar
  46. 46.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130–207.CrossRefGoogle Scholar
  47. 47.
    G. He, F. Liu, L. Huang, Z. Huang, and L. Jiang: J. Alloys Compd., 2017, vol. 701, pp. 909–19.CrossRefGoogle Scholar
  48. 48.
    J.J. Jonas, C.M. Sellars, and W.J.M. Tegart: Metall. Rev., 1969, vol. 14, pp. 1–24.Google Scholar
  49. 49.
    S. Mishra, K. Narasimhan, and I. Samajdar: Mater. Sci. Technol., 2007, vol. 23, pp. 1118–26.CrossRefGoogle Scholar
  50. 50.
    S. Mandal, S.K. Mishra, A. Kumar, I. Samajdar, P.V. Sivaprasad, T. Jayakumar, and B. Raj: Philos. Mag., 2008, vol. 88, pp. 883–97.CrossRefGoogle Scholar
  51. 51.
    H. Ziegler: vol. 4, Wiley, New York, 1963, pp. 93–113.Google Scholar
  52. 52.
    Y.V.R.K. Prasad and T. Seshacharyulu: Mater. Sci. Eng. A, 1998, vol. 243, pp. 82–88.CrossRefGoogle Scholar
  53. 53.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.CrossRefGoogle Scholar
  54. 54.
    J. Humphreys and G.S. Rohrer: Recrystallization and Related Annealing Phenomena, Third Edit., Elsevier, 2017.Google Scholar
  55. 55.
    Y.C. Lin, M. Chen, and J. Zhong: Mech. Res. Commun., 2008, vol. 35, pp. 142–50.CrossRefGoogle Scholar
  56. 56.
    E.I. Poliak and J.J. Jonas: ISIJ Int., 2003, vol. 43, pp. 684–91.CrossRefGoogle Scholar
  57. 57.
    S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1062–72.CrossRefGoogle Scholar
  58. 58.
    F. Chen, J. Liu, H. Ou, B. Lu, Z. Cui, and H. Long: Mater. Sci. Eng. A, 2015, vol. 642, pp. 279–87.CrossRefGoogle Scholar
  59. 59.
    D.J. Abson and J.J. Jonas: Met. Sci. J., 1970, vol. 4, pp. 24–28.CrossRefGoogle Scholar
  60. 60.
    D. Wen, Y.C. Lin, J. Chen, X. Chen, J. Zhang, Y. Liang, and L. Li: J. Alloys Compd., 2015, vol. 618, pp. 372–79.CrossRefGoogle Scholar
  61. 61.
    M. Miller: Micron, 2001, vol. 32, pp. 757–64.CrossRefGoogle Scholar
  62. 62.
    J. Oblak, D.. Duvall, and D.. Paulonis: Mater. Sci. Eng., 1974, vol. 13, pp. 51–56.CrossRefGoogle Scholar
  63. 63.
    I.J. Moore, M.G. Burke, N.T. Nuhfer, and E.J. Palmiere: J. Mater. Sci., 2017, vol. 52, pp. 8665–80.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Chirag Gupta
    • 1
  • Jyoti S. Jha
    • 1
  • Bhagyaraj Jayabalan
    • 2
  • Rajat Gujrati
    • 3
  • Alankar Alankar
    • 1
  • Sushil Mishra
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  3. 3.National Centre for Aerospace Innovation and ResearchIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations