Experimental and Theoretical Research on the Corrosion Resistance of Ferrous Alloys in Aluminum Melts

  • 204 Accesses


The resistance of three ferrous alloys (HT150, QT500, and H13) to corrosion caused by exposure to aluminum melts has been systematically studied using experiments and modeling. Results show that the exfoliation and dissolution of intermetallic compounds like Fe2Al5 and FeAl3 formed by the interdiffusion between aluminum melts and ferrous alloys are responsible for the corrosive attack. Based on the thermodynamics and kinetics of intermetallic compounds, an analytical model has been established to quantitatively account for the corrosion behavior between the ferrous alloys and aluminum melts, and the diffusion inhibition factor λ is first introduced in this work to quantitatively estimate the extent to which the existence of carbon can influence the diffusion of aluminum melts to the ferrous alloys. Theoretical analysis demonstrates that the flake graphite in HT150 can reduce the corrosion rate most effectively, followed by spheroidal graphite in QT500. Both outperform H13.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    H. Yang, W.T. Tsai, J.C. Kuo and C. Yang: J. Alloys Compd., 2011, vol. 509, pp. 8176-82.

  2. 2.

    V. Nunes, F.J.G. Silva, M.F. Andrade, R. Alexandre and A.P.M. Baptista: Surf. Coat. Technol., 2017, vol. 332, pp. 319-31.

  3. 3.

    N.L. Okamoto, J. Okumura, M. Higashi and H. Inui: Acta Mater., 2017, vol. 129, pp. 290-99.

  4. 4.

    M. Yousaf, J. Iqbal and M. Ajmal: Mater. Charact., 2011, vol. 62, pp. 517-25.

  5. 5.

    X. Zhang, W. Chen, H. Luo, S. Li, T. Zhou and L. Shi: Corros. Sci., 2017, vol. 125, pp. 20-28.

  6. 6.

    D. Alonso-Peña, M.E. Arnáiz-García, J.L. Valero-Gasalla, A.M. Arnáiz-García, R. Campillo-Campaña, J. Alonso-Peña, J.M. González-Santos, A.L. Fernández-Díaz and J. Arnáiz: Burns, 2015, vol. 41, pp. 1122-25.

  7. 7.

    S. Komarov and D. Kuznetsov: Int. J. Refract. Met. Hard Mater., 2012, vol. 35, pp. 76-83.

  8. 8.

    N. Tunca, G.W. Delamore and R.W. Smith: Metall. Mater. Trans. A, 1990, vol. 21, pp. 2919-28.

  9. 9.

    N. Tang, Y.P. Li, S. Kurosu, H. Matsumoto and A. Chiba: Corros. Sci., 2012, vol. 60, pp. 32-37.

  10. 10.

    Y. Li, N. Tang, P. Tunthawiroon, Y. Koizumi and A. chiba: Corros. Sci., 2013, vol. 73, pp. 72-79.

  11. 11.

    H. Xiao, W. Chen and Z. Liu: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 2320-26.

  12. 12.

    M.B. Lin, C.J. Wang and A.A. Volinsky: Surf. Coat. Technol., 2011, vol. 206, pp. 1595-99.

  13. 13.

    D. Cong, H. Zhou, Z. Ren, H. Zhang, L. Ren, C. Meng and C. Wang: Opt. Laser. Eng., 2014, vol. 54, pp. 55-61.

  14. 14.

    M.S. Sidhu: PhD thesis, University of Canterbury, 2012.

  15. 15.

    D. Balloy, J.C. Tissier, M.L. Giorgi, M.L. Giorgi and M. Briant: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2366-76.

  16. 16.

    J. Rong, Z. Kang, S. Chen, D. Yang, J. Huang and J. Yang: Mater. Charact., 2017, vol. 132, pp. 413-21.

  17. 17.

    A.V. Alboom, B. Lemmens, B. Breitbach, E.D. Grave, S. Cottenier and K. Verbeken: Surf. Coat. Technol., 2017, vol. 324, pp. 419-28.

  18. 18.

    Z. Ding, Q. Hu, W. Lu, X. Ge, S. Gao, S. Sun, T. Yang, M. Xia and J. Li: Mater. Charact., 2018, vol. 136, pp. 157-64.

  19. 19.

    K. Bouche, F. Barbier and A. Coulet: Mater. Sci. Eng. A, 1998, vol. 249, pp. 167-75.

  20. 20.

    T. Heumann and S. Dittrich: Z. Metallkunde, 1959, vol. 50, pp. 617-25.

  21. 21.

    S. Chen, D. Yang, M. Zhang, J. Huang and X. Zhao: Metall. Mater. Trans. A, 2016, vol. 47, pp. 5088-100.

  22. 22.

    M.S. Sidhu, C.M. Bishop and M.V. Kral: Int. J. Cast Met. Res., 2014, vol. 27, pp. 321-28.

  23. 23.

    H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla and G. Eggeler: Acta Mater., 2011, vol. 59, pp. 1586-600.

  24. 24.

    T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J.F. Löffler and P.J. Uggowitzer: Mater. Sci. Eng. A, 2007, vol. 448, pp. 1-6.

  25. 25.

    A. Ureña, J. Rams, M.D. Escalera and M. Sánchez: Compos. Sci. Technol., 2005, vol. 65, pp. 2025-38.

  26. 26.

    B. Liu, Hot dip aluminizing of steel, Metallurgical Industry Press, Beijing, 1995, pp. 21-23.

  27. 27.

    G. Wang, A. Meng, and Z. Ren: Physical Chemistry, 3rd ed., Shanghai Scientific & Technical Publishers, Shanghai, 2007, pp. 293–302.

  28. 28.

    S. Mei, M. Gao, J. Yan, C. Zhang, G. Li and X. Zeng: Sci. Technol. Weld. Joining, 2013, vol. 18(4), pp. 293-300.

  29. 29.

    R.W. Richards, R.D. Jones, P.D. Clements and H. Clarke: Int. Mater. Rev, 1994, vol.39, pp. 191-212.

  30. 30.

    N. Tang, Y. Li, Y. Koizumi, S. Kurosu and A. Chiba: Corros. Sci., 2013, vol. 73, pp. 54-61.

  31. 31.

    L.L. Bircumshaw and A.C. Riddiford: Q. Rev. Chem. Soc., 1952, vol. 6, pp. 157-85.

  32. 32.

    V.N. Yeremenko, Y.V. Natanzon and V.I. Dybkov: J. Mater. Sci., 1981, vol. 16, pp. 1748-56.

  33. 33.

    J.R. Davis, Metals Handbook Desk Edition. ASM, USA, 1998.

  34. 34.

    V.N. Eremenko, Y.V. Natanzon and V.I. Dybkov: J. Mater. Sci., 1985, vol. 20, pp. 501-07.

  35. 35.

    H. Rezaei, M.R. Akbarpour and H.R. Shahverdi: JOM, 2015, vol. 67, pp. 1443-50.

  36. 36.

    J. Mackowiak and L.L. Shreir (1959) J Less Common Met 1(6):456-466.

Download references

Author information

Correspondence to Kui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 22, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Wang, K., Dong, X. et al. Experimental and Theoretical Research on the Corrosion Resistance of Ferrous Alloys in Aluminum Melts. Metall and Mat Trans A 50, 4665–4676 (2019).

Download citation