Advertisement

Investigation of ZnO/Waterborne Polyurethane Hybrid Coatings for Corrosion Protection of AISI 1018 Carbon Steel Substrates

  • P. Salazar-Bravo
  • D. Del Angel-LópezEmail author
  • A. M. Torres-HuertaEmail author
  • M. A. Domínguez-Crespo
  • D. Palma-Ramírez
  • S. B. Brachetti-Sibaja
  • A. C. Ferrel-Álvarez
Article
  • 40 Downloads

Abstract

ZnO nanoparticles were synthesized by the traditional sol–gel method followed by a thermal treatment at different temperatures (673 K, 873 K, or 1073 K) and addition of different amounts (2, 4, or 6 wt pct) into a commercial waterborne polyurethane (WBPU) matrix in order to produce hybrid coatings for corrosion inhibition of AISI 1018 carbon steel (CS). The different hybrid coatings were deposited by the spraying method after being magnetically stirred for 60 minutes. The effects of the thermal treatments on the structural, optical, and morphological properties of ZnO particles were analyzed by X-ray diffraction, ultraviolet visible spectroscopy (UV–vis), and scanning electron microscopy. Changes in the electrochemical performances of waterborne polyurethane-coated carbon steel attributable to the incorporation of ZnO powders were investigated by the open-circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization techniques in chloride medium. Also, structural, chemical, and mechanical properties were characterized in the hybrid coatings to evaluate the interaction type, UV degradation, adhesion, and hardness. The results revealed that the crystallite size of ZnO particles was within the interval ranging from 33.10 ± 0.02 to 72.00 ± 0.05 nm, which increased with the increasing temperature of thermal treatment. The treatment temperature modified the morphology of the ZnO particles, where a rod-type morphology was observed at 673 K, whereas agglomerated hexagonal facets were obtained at 1073 K. ZnO powders can reinforce the optical properties of WBPU coatings, which could delay the structural damage of the polymer, particularly in the UV region, and transparency can be modulated depending on the crystallite size, the amount of added ZnO, and the thermal treatment. The 6 wt pct (673 K) loading of ZnO particles during the WBPU polymerization improved the mechanical properties from 79.2 ± 4 to 165.5 ± 0.1 MPa. The electrochemical performance suggests that ZnO reinforced the barrier properties of WBPU, but at the same time supplied active protection by precipitating zinc hydroxide species in the cathodic sites. Kinetic parameters and impedance analysis showed that hybrid coatings containing 6 wt pct of the treated ZnO particles (673 K) displayed the best protection efficiency of AISI 1018 CS.

Notes

Acknowledgments

Patricia Salazar Bravo is grateful for the received postgraduate grant through SENER-CONACyT. The authors are also grateful for the financial support provided by the CONACYT Research Fellowship-IPN-CICATA Altamira agreement, 2014-1905 and CONACyT CB2015-252181 projects; Instituto Politécnico Nacional through the SIP2019-6650, SIP2019-6670 and SIP2019-6718 projects; as well as SNI-CONACyT.

References

  1. 1.
    K.L. Noble: Prog. Org. Coat., 1997, vol. 32, pp. 131-136.CrossRefGoogle Scholar
  2. 2.
    D.K. Chattopadhyay, K.V.S.N. Raju: Prog. Polym. Sci., 2007, vol. 32, pp. 352-418.CrossRefGoogle Scholar
  3. 3.
    D. K. Chattopadhyay, D.C. Webster: Prog. Polym. Sci., 2009, vol. 34, pp. 1068-1133.CrossRefGoogle Scholar
  4. 4.
    X. Ye, Z. Wang, L. Ma, Q. Wang, A. Chu: Surf. Coat. Technol., 2019, vol. 358, pp. 497-504.CrossRefGoogle Scholar
  5. 5.
    M.F. Montemor: Surf. Coat. Technol., 2014, vol. 258, pp. 17-37.CrossRefGoogle Scholar
  6. 6.
    A. Ehsani, M.G. Mahjani, M. Hosseini, R. Safari, R. Moshrefi, H. M. Shiri: J. Colloid Interface Sci., 490:444–451;2017CrossRefGoogle Scholar
  7. 7.
    Z. Lei, Q. Zhang, X. Zhu, D. Ma, F. Ma, Z. Song, Y.Q. Fu: Appl. Surf. Sci., 2018, vol. 431, pp. 170-176.CrossRefGoogle Scholar
  8. 8.
    H. Huang, D. Zhang, S. Fang, J. Zhu, X. Peng: Prog. Org. Coat., 2019, vol. 126, pp. 44-52.CrossRefGoogle Scholar
  9. 9.
    J. Zhao, T. Zhou, J. Zhang, H. Chen, C. Yuan, W. Zhang, A. Zhang: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 19257-19264.CrossRefGoogle Scholar
  10. 10.
    M.M. Rahman, H. Kim: J. Appl. Polym. Sci., 2006, vol. 102, pp. 5684-5691.CrossRefGoogle Scholar
  11. 11.
    G.N. Chen, K.N. Chen: J. Appl. Polym. Sci., 1997, vol. 63, pp. 1609-1623.CrossRefGoogle Scholar
  12. 12.
    M.M. Rahman, M.H. Zahir, M.B. Haq, D.A.A. Shehri, A.M. Kumar: Coat., 2018, vol. 8, 34 pp. 1-12.Google Scholar
  13. 13.
    G. Christopher, M.A. Kulandainathan, G. Harichandran: J. Coat. Technol. Res., 2015, vol. 12, pp. 657-667.CrossRefGoogle Scholar
  14. 14.
    J. Li, Z. Zhao, Y. Zhang, M. Li, Z. Luo, Luo: J. Sol-Gel Sci. Tech., 2017, 82:299-307.CrossRefGoogle Scholar
  15. 15.
    M. Hasani, M. Mahdavian, H. Yari, B. Ramezanzadeh: Prog. Org. Coat., 2018, vol. 116, pp. 90-101.CrossRefGoogle Scholar
  16. 16.
    A.M. El Saeed, M.A. El-Fattah, A.M. Azzam: Dyes. Pigm., 2015, vol. 121, pp. 282-289.CrossRefGoogle Scholar
  17. 17.
    Y. Qing, C. Yang, C. Hu, Y. Zheng, C. Liu: Appl. Surf. Sci., 2015, vol. 326, pp. 48-54.CrossRefGoogle Scholar
  18. 18.
    M.M. Alves, D.V. Cunha, C.F. Santos, N.P. Mira, M.F. Montemor: Ceram. Int., 2018, vol. 44, pp. 4467-4472.CrossRefGoogle Scholar
  19. 19.
    J.S. Park, I. Mahmud, H.J. Shin, M.K. Park, A. Ranjkesh, D.K. Lee, H.R. Kim: Appl. Suf. Sci., 2016, vol. 362, pp. 132-139.CrossRefGoogle Scholar
  20. 20.
    M. Cao, F. Wang, J. Zhu, X. Zhang, Y. Qin, L. Wang: Mater. Lett., 2017, vol. 192, pp. 1-4.CrossRefGoogle Scholar
  21. 21.
    Y.M. Im, T.H. Oh, J.A. Nathanael, S.S. Jang: Mater. Lett., 2015, vol. 147, pp. 20-24.CrossRefGoogle Scholar
  22. 22.
    G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim, J.C. Knowles: Prog. Mater. Sci., 2016, vol. 77, pp. 1-79.CrossRefGoogle Scholar
  23. 23.
    H. Schmidt: J. Non-Cryst. Solids, 1988, vol. 100, pp. 51-64.CrossRefGoogle Scholar
  24. 24.
    L. Chagnon, G. Arnold, S. Giljean, M. Brogly: Prog. Org. Coat., 2013, vol. 76, pp. 1337-1345.CrossRefGoogle Scholar
  25. 25.
    C.A. Schuh: Mater. Today, 2006, vol. 9, pp. 32-40.CrossRefGoogle Scholar
  26. 26.
    ASTM: D4541-17 Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers, 2017.Google Scholar
  27. 27.
    M. Pudukudy, Z. Yaakob: Appl. Surf. Sci., 2014, vol. 292, pp. 520-530.CrossRefGoogle Scholar
  28. 28.
    P. Chand, A. Gaur, A. Kumar: J. Alloys Compd., 2012, vol. 539, pp. 174-178.CrossRefGoogle Scholar
  29. 29.
    K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, L. El Mir: Microelectron. Eng., 2014, vol. 128, pp. 53-58.CrossRefGoogle Scholar
  30. 30.
    K. Harun, N. Mansor, Z.A. Ahmad, A.A. Mohamad: Procedia Chem., 2016, vol. 19, pp. 125-132.CrossRefGoogle Scholar
  31. 31.
    K. Ocakoglu, S.A. Mansour, S. Yildirimcan, A.A. Al-Ghamdi, F. El-Tantawy, F. Yakuphanoglu: Spectrochim. Acta A, 2015, vol. 148, pp. 362-368.CrossRefGoogle Scholar
  32. 32.
    Y. Zhou, L. Xu, Z. Wu, P. Li, J. He: Optik, 2017, vol. 130, pp. 673-680.CrossRefGoogle Scholar
  33. 33.
    P. Kubelka, F. Munk: Z. Tech. Phys, 1931, vol. 12, pp. 593-601.Google Scholar
  34. 34.
    A.E. Morales, E.S. Mora, U. Pal: Rev. Mex. Fis. E, 2007, vol. 53, pp. 18-22.Google Scholar
  35. 35.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian: J. Alloys Compd., 2013, vol. 550, pp. 63-70.CrossRefGoogle Scholar
  36. 36.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner: Prog. Mater. Sci., 2005, vol. 50, pp. 293-340.CrossRefGoogle Scholar
  37. 37.
    H. Nakatani, H. Ooike, T. Kishida, S. Motokucho: Prog. Org. Coat., 2016, vol. 97, pp. 269-276.CrossRefGoogle Scholar
  38. 38.
    X. Gu, G. Chen, M. Zhao, S.S. Watson, T. Nguyen, J.W. Chin, J.W. Martin: J. Coat. Technol. Res., 2012, vol. 9, pp. 251-267.CrossRefGoogle Scholar
  39. 39.
    M. Rashvand, Z. Ranjbar, S. Rastegar: Prog. Org. Coat., 2011, vol. 71, pp. 362-368.CrossRefGoogle Scholar
  40. 40.
    A.L. Tolstov, O.V. Zinchenko, V.F. Matyushov: Theor. Exp. Chem., 2015, vol. 51, pp. 333-338.CrossRefGoogle Scholar
  41. 41.
    M.A. Reyes-Acosta, A.M. Torres-Huerta, M.A. Dominguez-Crespo, A.I. Flores-Vela, H.J. Dorantes-Rosales, E. Ramírez-Meneses: J. Alloys Compd., 2015, vol. 643, pp. S150-S158.CrossRefGoogle Scholar
  42. 42.
    B. Soltani, M. Asghari: Membranes, 2017, vol. 7, 43, pp. 1-16.Google Scholar
  43. 43.
    L. Podgorski, M. de Meijer, J.D. Lanvin: Coat., 2017, vol. 7, 163 pp. 1-11.Google Scholar
  44. 44.
    L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M. S. Islam: Int. J. Polym. Sci., 2015, vol. 2015 pp. 1-15.CrossRefGoogle Scholar
  45. 45.
    S. Goel, G. Cross, A. Stukowski, E. Gamsjäger, B. Beake, A. Agrawal: Comput. Mater. Sci., 2018, vol. 152, pp. 196-210.CrossRefGoogle Scholar
  46. 46.
    D. Kim, K. Jeon, Y. Lee, J. Seo, K. Seo, H. Han, S. Khan: Prog. Org. Coat., 2012, vol. 74, pp. 435-442.CrossRefGoogle Scholar
  47. 47.
    B. Poon, D. Rittel, G. Ravichandran: Int. J. Solids Struct., 2008, vol. 45, pp. 6399-6415.CrossRefGoogle Scholar
  48. 48.
    D. Del Angel-López, M.A. Domínguez-Crespo, A.M. Torres-Huerta, A. Flores-Vela, J. Andraca-Adame, H. Dorantes-Rosales: J. Mater.Sci., 2013, vol. 48, pp. 1067-1084.CrossRefGoogle Scholar
  49. 49.
    F. Mansfeld, M.W. Kendig, S. Tsai: Corros., 1982, vol. 38, pp. 478-485.CrossRefGoogle Scholar
  50. 50.
    M. Kendig, J. Scully: Corros., 1990, vol. 46, pp. 22-29.CrossRefGoogle Scholar
  51. 51.
    Y. Xua, M. Liu: Geothermics, 2017, vol. 70, pp. 339–350.CrossRefGoogle Scholar
  52. 52.
    J. Bico, U. Thiele, D. Quéré: Colloids Surf. A, 2002, vol. 206, pp. 41-46.CrossRefGoogle Scholar
  53. 53.
    X. Zhang, R. Ma, A. Du, Q.Liu, Y. Fan, X. Zhao, J. Wu, X. Cao. Applied Surface Science 484 (2019) 814–824.CrossRefGoogle Scholar
  54. 54.
    G. Christopher, M. A. Kulandainathan, G. Harichandran. Progr. Org. Coat. 99:91–102;2016.CrossRefGoogle Scholar
  55. 55.
    X. J. Raj. Journal of Materials Engineering and Performance JMEPEG (2017) 26:3245–3253.CrossRefGoogle Scholar
  56. 56.
    B.N. Zand, M. Mahdavian: Surf. Coat. Technol., 2009, vol. 203, pp. 1677–1681.CrossRefGoogle Scholar
  57. 57.
    B.N. Zand, M. Mahdavian: Electrochim. Acta, 2007, vol. 52, pp. 6438-6442.CrossRefGoogle Scholar
  58. 58.
    P. E. Plueddemann: Silane Coupling Agents, 2nd ed., Springer, New York, NY, 1991, pp. 115–152.CrossRefGoogle Scholar
  59. 59.
    T.H. Chiang, T.-E. Hsieh: Int. J. Adhes. Adhes., 2006, vol. 26, pp. 520-531.CrossRefGoogle Scholar
  60. 60.
    Y. González-García, S. González, R.M. Souto: Corros. Sci., 2007, vol. 49, pp. 3514-3526.CrossRefGoogle Scholar
  61. 61.
    S.K. Dhoke, R. Bhandari, A.S. Khanna: Prog. Org. Coat., 2009, vol. 64, pp. 39-46.CrossRefGoogle Scholar
  62. 62.
    K. Chrissafis, G. Antoniadis, K.M. Paraskevopoulos, A. Vassiliou, D.N. Bikiaris: Compos. Sci. Technol. 2007, vol. 67, pp. 2165-74.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • P. Salazar-Bravo
    • 1
  • D. Del Angel-López
    • 1
    • 2
    Email author
  • A. M. Torres-Huerta
    • 1
    Email author
  • M. A. Domínguez-Crespo
    • 1
  • D. Palma-Ramírez
    • 3
  • S. B. Brachetti-Sibaja
    • 4
  • A. C. Ferrel-Álvarez
    • 1
  1. 1.Instituto Politécnico NacionalCICATA-AltamiraAltamiraMexico
  2. 2.Tecnologico de Monterrey, Escuela de Ingeniería y CienciasMonterreyMexico
  3. 3.Instituto Politécnico Nacional, CMP+LMexico CityMexico
  4. 4.TecNM, Instituto Tecnológico de Cd. MaderoMadero TampsMexico

Personalised recommendations