Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4652–4664 | Cite as

Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint

  • Kai Ding
  • Shangfei Qiao
  • Shuping Liu
  • Bingge Zhao
  • Xin Huo
  • Xiaohong Li
  • Yulai GaoEmail author


Based on a series of stress rupture tests at 620 °C under 110 to 170 MPa and at 650 °C under 80 to 110 MPa, the relationship between the stress and rupture time was obtained to evaluate the long-term performance of the welded joint (WJ). At 620 °C, the stress rupture occurred in the base metal of 9 pct Cr steel (9 pct Cr-BM), with the stress ranging from 130 to 170 MPa, yet the failure shifted to the heat-affected zone (HAZ) of 9 pct Cr steel (9 pct Cr-HAZ) with the stress ranging from 110 to 120 MPa. This failure behavior was observed at 650 °C with the turning point of 110 MPa. In particular, a ductile-to-brittle transition was determined when the rupture location shifted from 9 pct Cr-BM to 9 pct Cr-HAZ. Moreover, both the Laves phase adjacent to the M23C6 and the independent phases could be detected in the 9 pct Cr-HAZ after the stress rupture test, while only M23C6-type carbides could be found in the 9 pct Cr-BM. The appearance of the microhardness turning point and the formation of the Laves phase in the 9 pct Cr-HAZ are considered as the crucial factors resulting in the transition of the failure mode.



The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. U1760102), the financial support from the Program for Professor of Special Appointment (Eastern Scholar), the Shanghai Institutions of Higher Learning (Grant No. TP2014042), and the Shanghai Science and Technology Committee (Grant No. 13DZ1101502).


  1. 1.
    1.X.Z. Zhang, X. Wu, J.R. Liu, J. Liu, and M.X. Yao: Mater. Sci. Eng. A, 2017, vol. 706, pp. 279–86.Google Scholar
  2. 2.
    2.P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, and W. Liu: Mater. Des., 2014, vol. 54, pp. 874–79.Google Scholar
  3. 3.
    3.I. Hajiannia, M. Shamanian, and M. Kasiri: Mater. Des., 2013, vol. 50, pp. 566–73.Google Scholar
  4. 4.
    4.K. Mo, G. Lovicu, X. Chen, H.-M. Tung, J.B. Hansen, and J.F. Stubbins: J. Nucl. Mater., 2013, vol. 441, pp. 695–703.Google Scholar
  5. 5.
    5.F.G. Lu, P. Liu, H.J. Ji, Y.M. Ding, X.J. Xu, and Y.L. Gao: Mater. Charact., 2014, vol. 92, pp. 149–58.Google Scholar
  6. 6.
    6.R.L. Klueh and D.J. Alexander: J. Nucl. Mater., 1998, vols. 258–263, pp. 1269–74.Google Scholar
  7. 7.
    7.A. Zieliński, J. Dobrzański, H. Purzyńska, and G. Golański: Arch. Metall. Mater., 2016, vol. 61, pp. 957–64.Google Scholar
  8. 8.
    A.C. Pandey, M.M. Giri, and A. Mahapatra: Mater. Sci. Eng. A, 2016, vol. 664, pp. 58–74.Google Scholar
  9. 9.
    9.X. Liu, Z.P. Cai, X.L. Deng, and F.G. Lu: J. Mater. Res., 2017, vol. 32, pp. 3117–27.Google Scholar
  10. 10.
    10.K.H. Lee, J.Y. Suh, S.M. Hong, J.Y. Huh, and W.S. Jung: Mater. Charact., 2015, vol. 106, pp. 266–72.Google Scholar
  11. 11.
    11.X. Liu, F.G. Lu, R.J. Yang, P. Wang, X.J. Xu, and X. Huo: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1434–40.Google Scholar
  12. 12.
    12.J. Bugge, S. Kjær, and R. Blum: Energy, 2006, vol. 31, pp. 1437–45.Google Scholar
  13. 13.
    13.A.K. Roy, M.H. Hasan, and J. Pal: Mater. Sci. Eng. A, 2009, vol. 520, pp. 184–88.Google Scholar
  14. 14.
    14.X.Q. Song, L.Y. Tang, Z. Chen, and R.C. Zhou: J. Mater. Sci., 2017, vol. 52, pp. 4587–98.Google Scholar
  15. 15.
    15.X.L. Deng, F.G. Lu, H.C. Cui, X.H. Tang, and Z.G. Li: Mater. Sci. Eng. A, 2016, vol. 651, pp. 1018–30.Google Scholar
  16. 16.
    16.Q. Guo, F.G. Lu, H.C. Cui, R.J. Yang, X. Liu, and X.H. Tang: J. Mater. Process. Technol., 2015, vol. 226, pp. 125–33.Google Scholar
  17. 17.
    17.C.D. Shao, F.G. Lu, X.F. Wang, Y.M. Ding, and Z.G. Li: J. Mater. Sci. Technol., 2016, vol. 33, pp. 1610–20.Google Scholar
  18. 18.
    18.W. Liu, F.G. Lu, Y.H. Wei, Y.M. Ding, P. Wang, and X.H. Tang: Mater. Des., 2016, vol. 108, pp. 195–206.Google Scholar
  19. 19.
    19.M. Taneike, K. Sawada, and F. Abe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1255–62.Google Scholar
  20. 20.
    20.Q.F. He, Y.F. Ye, and Y. Yang: J. Phase Equilib. Diff., 2017, vol. 38, pp. 416–25.Google Scholar
  21. 21.
    21.L. Tan, D.T. Hoelzer, J.T. Busby, M.A. Sokolov, and R.L. Klueh: J. Nucl. Mater., 2012, vol. 422, pp. 45–50.Google Scholar
  22. 22.
    22.L. Tan, Y. Yang, and J.T. Busby: J. Nucl. Mater., 2013, vol. 442, pp. S13–S17.Google Scholar
  23. 23.
    23.S.S. Wang, D.L. Deng, L. Chang, and X.D. Hui: Mater. Des., 2013, vol. 50, pp. 174–80.Google Scholar
  24. 24.
    24.H. Wang, W. Yan, S.V. Zwaag, Q.Q. Shi, W. Wang, K. Yang, and Y.Y. Shan: Acta Mater., 2017, vol. 134, pp. 143–54.Google Scholar
  25. 25.
    25.L. Maddi, G.S. Deshmukh, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, K. Laha, and M.D. Mathew: Mater. Sci. Eng. A, 2016, vol. 668, pp. 215–23.Google Scholar
  26. 26.
    26.S. Zhu, M. Yang, X.L. Song, S. Tang, and Z.D. Xiang: Mater. Charact., 2014, vol. 98, pp. 60–65.Google Scholar
  27. 27.
    27.G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak: Mater. Charact., 2003, vol. 51, pp. 341–52.Google Scholar
  28. 28.
    28.O. Prat, J. Garcia, D. Rojas, G. Suauthoff, and G. Inden: Intermetallics, 2013, vol. 32, pp. 362–72.Google Scholar
  29. 29.
    29.Z.F. Peng, S. Liu, C. Yang, F.Y. Chen, and F.F. Peng: Acta Mater., 2018, vol. 143, pp. 141–55.Google Scholar
  30. 30.
    30.S.K. Rai, A. Kumar, V. Shankar, T. Jayakumar, and K.B.S. Rao: Scripta Mater., 2004, vol. 51, pp. 59–63.Google Scholar
  31. 31.
    31.Ö. Özgün, H.Ö. Gülsoy, R. Yilmaz, and F. Findik: J. Alloy. Compd., 2013, vol. 546, pp. 192–207.Google Scholar
  32. 32.
    32.A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, and M. Chmielus: Mater. Des., 2016, vol. 111, pp. 482–91.Google Scholar
  33. 33.
    33.L.M. Suave, J. Cormier, P. Villechaise, S. Aurélie, H. Zéline, and D. Bertheau: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2963–82.Google Scholar
  34. 34.
    34.P.H. Wang, J.M. Chen, H.Y. Fu, S. Liu, H.W. Li, and Z.Y. Xu: J. Nucl. Mater., 2013, vol. 442, pp. S9–S12.Google Scholar
  35. 35.
    35.I.J. Moore, M.G. Burke, and E.J. Palmiere: Acta Mater., 2016, vol. 119, pp. 157–66.Google Scholar
  36. 36.
    36.Z.X. Xia, C. Zhang, H. Lan, Z.G. Yang, P.H. Wang, J.M. Chen, Z.Y. Xu, X.W. Li, and S. Liu: Mater. Sci. Eng. A, 2010, vol. 528, pp. 657–62.Google Scholar
  37. 37.
    37.K. Ding, P. Wang, X. Liu, X.H. Li, B.G. Zhao, and Y.L. Gao: J. Mater. Eng. Perform., 2018, vol. 27 pp. 6027–39.Google Scholar
  38. 38.
    38.Q. Guo, F.G. Lu, X. Liu, R.J. Yang, H.C. Cui, and Y.L. Gao: Mater. Sci. Eng. A, 2015, vol. 638, pp. 240–50.Google Scholar
  39. 39.
    39.Q.J. Wu, F.G. Lu, H.C. Cui, Y.M. Ding, X. Liu, and Y.L. Gao: Mater. Sci. Eng. A, 2014, vol. 615, pp. 98–106.Google Scholar
  40. 40.
    40.H.G. Dong, P.X. Wang, X.H. Hao, S. Li, P. Li, Y.L. Gao, B.G. Zhao, and D.J. Yan: Mater. Lett., 2018, vol. 228, pp. 407–10.Google Scholar
  41. 41.
    41.K. Ding, H.J. Ji, X. Liu, P. Wang, Q.L. Zhang, X.H. Li, and Y.L. Gao: J. Iron Steel Res. Int., 2018, vol. 25 pp. 847–53.Google Scholar
  42. 42.
    42.K. Ding, H.J. Ji, Q.L. Zhang, X. Liu, P. Wang, X.H. Li, L. Zhang, and Y.L. Gao: J. Iron Steel Res. Int., 2018, vol. 25, pp. 839–46.Google Scholar
  43. 43.
    43.Q.J. Wu, F.G. Lu, H.C. Cui, X. Liu, P. Wang, and Y.L. Gao: Mater. Lett., 2015, vol. 141, pp. 242–44.Google Scholar
  44. 44.
    44.H.K. Ji, Y.J. Oh, I.S. Hwang, J.K. Dong, and J.T. Kim: J. Nucl. Mater., 2001, vol. 299, pp. 132–39.Google Scholar
  45. 45.
    A. Laha, K.S. Chandrevathi, P. Parameswaran, K. BhanuSankaraRao, and S.L. Mannan: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 58–68.Google Scholar
  46. 46.
    46.T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe: Int. J. Press. Vessel. Pip., 2006, vol. 83, pp. 63–71.Google Scholar
  47. 47.
    47.Y.H. Wei, S.F. Qiao, F.G. Lu, and W. Liu: Mater. Des., 2016, vol. 97, pp. 268–78.Google Scholar
  48. 48.
    48.P. Dahlman, F. Gunnberg, and M. Jacobson: J. Mater. Process. Technol., 2004, vol. 147, pp. 181–84.Google Scholar
  49. 49.
    49.J. Hua, R. Shivpuri, X.M. Cheng, V. Bedekar, Y. Matsumoto, F. Hashimoto, and T.R. Watkins: Mater. Sci. Eng. A, 2005, vol. 394, pp. 238–48.Google Scholar
  50. 50.
    50.W. Liu, X. Liu, F.G. Lu, X.H. Tang, H.C. Cui, and Y.L. Gao: Mater. Sci. Eng. A, 2015, vol. 644, pp. 337–46.Google Scholar
  51. 51.
    51.P. Liu, F.G. Lu, X. Liu, H.J. Ji, and Y.L. Gao: J. Alloys Compd., 2014, vol. 584, pp. 430–37.Google Scholar
  52. 52.
    52.A. Elrefaey, Y. Javadi, J.A. Francis, M.D. Callaghan, and A.J. Leonard: Int. J. Press. Vessel. Pip., 2018, vol. 165 pp. 20–28.Google Scholar
  53. 53.
    53.C.G. Panait, W. Bendick, A. Fuchsmann, A.F. Gourgues-Lorenzon, and J. Besson: Int. J. Press. Vessel. Pip., 2010, vol. 87, pp. 326–35.Google Scholar
  54. 54.
    54.H.G. Armaki, R. Chen, K. Maruyama, and M. Igarashi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3084–94.Google Scholar
  55. 55.
    55.X. Wang, X. Wang, H.J. Li, H.L. Wu, Y.Y. Ren, H.W. Liu, and H. Liu: Weld. World, 2017, vol. 61 pp. 231–39.Google Scholar
  56. 56.
    56.J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, and H. Asahi: Mater. Sci. Eng. A, 2006, vol. 428, pp. 270–75.Google Scholar
  57. 57.
    57.D. Rojas, J. Garcia, O. Prat, L. Agudo, and C. Carrasco: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1372–81.Google Scholar
  58. 58.
    58.K. Shinozaki, L.I. De-Jun, H. Kuroki, H. Harada, and K. Ohishi: ISIJ Int., 2002, vol. 42, pp. 1578–84.Google Scholar
  59. 59.
    59.Y.T. Xu, Y.H. Nie, M.J. Wang, W. Li, and X.J. Jin: Acta Mater., 2017, vol. 131, pp. 110–22.Google Scholar
  60. 60.
    60.M.I. Isik, A. Kostka, and G. Enggeler: Acta Mater., 2014, vol. 81, pp. 230–40.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Kai Ding
    • 1
  • Shangfei Qiao
    • 2
  • Shuping Liu
    • 1
  • Bingge Zhao
    • 1
  • Xin Huo
    • 2
  • Xiaohong Li
    • 1
  • Yulai Gao
    • 1
    Email author
  1. 1.Center for Advanced Solidification Technology (CAST), School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Electric Power Generation Equipment Co.Shanghai Turbine Plant LtdShanghaiPeople’s Republic of China

Personalised recommendations