Subgrains, Texture Evolution, and Dynamic Abnormal Grain Growth in a Mo Rod Material

  • 132 Accesses


The roles of subgrains, texture, and surface energy during dynamic abnormal grain growth (DAGG) were examined in a commercial-purity Mo rod material. DAGG was observed in this material during tensile deformation at 2023 K (1750 °C). Cooling of specimens after tensile testing was sufficiently rapid to preserve both subgrain structures developed during deformation and several abnormal grains at early stages of growth. These and other microstructural features were characterized to evaluate how subgrains and boundary character influence the early stages of DAGG. Subgrains were observed in the deformed polycrystalline material but were generally absent in newly formed abnormal grains. This was identified as the cause of the sudden drop in flow stress observed at the initiation of DAGG. It is proposed that subgrain intersections with abnormal grain boundaries provide a driving pressure for DAGG. Subgrains within the deformed polycrystals were observed to locally change the boundary curvature at their intersections with abnormal grain boundaries, which likely encouraged growth of the abnormal grains into the deformed polycrystals. Abnormal grains produced by DAGG retained crystallographic orientations and boundary characters that closely resembled those of the polycrystalline material from which they grew. This suggests that neither differences in orientation nor boundary character were important to DAGG in this material.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    R. PremKumar, I. Samajdar, N. N. Viswanathan, V. Singal, and V. Sadr: Journal of Magnetism and Magnetic Materials, 2003, vol. 264, pp. 75–85.

  2. 2.

    B. L. Boyce and H. A. Padilla: Metallurgical and Materials Transactions A, 2011, vol. 42, pp. 1793–1804.

  3. 3.

    A. Rollett and W. Mullins: Scripta Materialia, 1997, vol. 36, pp. 975–980.

  4. 4.

    G. Gottstein, and L. S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications., CRC Press, Boca Raton, 2009.

  5. 5.

    N. Bozzolo, A Agnoli, N. Souai, M. Bernacki, and R. E. Log: Materials Science Forum, 2013, vol. 753, pp. 321–324.

  6. 6.

    V. M. Miller, A. E. Johnson, C. J. Torbet, T. M. Pollock: Metallurgical and Materials Transactions A, 2016, vol. 47, pp. 1566–1574.

  7. 7.

    S. B. Lee, D. Y. Yoon, and M. F. Henry: Acta Materialia, 2000, vol. 48, pp. 3071–3080.

  8. 8.

    J. Ciulik and E. M. Taleff: Scripta Materialia, 2009, vol. 61, pp. 895–898.

  9. 9.

    D. L. Worthington, N. A. Pedrazas, P. J. Noell, and E. M. Taleff: Metallurgical and Materials Transactions A, 2013, vol. 44, pp. 5025–5038.

  10. 10.

    P. J. Noell, D. L. Worthington, and E. M. Taleff: Metallurgical and Materials Transactions A, 2015, vol. 46, pp. 5708–5718.

  11. 11.

    P. J. Noell, D. L. Worthington, and E. M. Taleff: Materials Science and Engineering: A, 2017, vol. 692, pp. 24–34.

  12. 12.

    N. A. Pedrazas, T. E. Buchheit, E. A. Holm, and E. M. Taleff: Materials Science and Engineering: A, 2014, vol. 610, pp. 76–84.

  13. 13.

    P. J. Noell and E. M. Taleff: JOM, 2015, vol. 67, pp. 2642–2645.

  14. 14.

    P. J. Noell and E. M. Taleff: Metallurgical and Materials Transactions A, 2016, vol. 47, pp. 5023–5036.

  15. 15.

    M. E. Kassner and M.-T. Pérez-Prado: Progress in Materials Science, 2000, vol. 45, pp. 1–102.

  16. 16.

    J. Ciulik, E. M. Taleff: Materials Science and Engineering: A, 2007, vol. 463, pp. 197–202.

  17. 17.

    C. V. Thompson: Annual Review of Materials Science, 1990, vol. 20, pp. 245–268.

  18. 18.

    R. Barto and L. Ebert: Metallurgical Transactions, 1971, vol. 2, pp. 1643–1649.

  19. 19.

    HKL Channel 5: Oxford Instruments PLC, Oxon, United Kingdom.

  20. 20.

    Wolfram Research: Mathematica 8.0, 2010.

  21. 21.

    D. Brandon: Acta Metallurgica, 1966, vol. 14, pp. 1479–1484.

  22. 22.

    S. I. Wright, M. M. Nowell, and D. P. Field: Microscopy and Microanalysis, 2011, vol. 17, pp. 316–329.

  23. 23.

    ASTM International: Standard Designation E 112-13, ASTM International, PA, 2013.

  24. 24.

    R. A. Lebensohn and C. N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–2624.

  25. 25.

    C.N. Tomé and R.A. Lebensohn: Manual for Code: Viso-plastic Self-consistent (VPSC), Version 7c, 2009, Los Alamos National Laboratory, Los Alamos

  26. 26.

    W.F. Gale and T.C. Totemeier, eds.: Smithells Metals Reference Book, 8th ed. Elsevier Inc./ASM International, Materials Park, 2004, p. 15-5

  27. 27.

    O. D. Sherby, P. M. Burke: Progress in Materials Science, 1968, vol. 13, pp. 325–390.

  28. 28.

    O. D. Sherby, R. H. Klundt and A. K. Miller: Metallurgical Transactions A, 1977, vol. 8A, pp. 843–850.

  29. 29.

    J. Mackenzie: Acta Metallurgica, 1964, vol 12, pp. 223–225.

  30. 30.

    L.Bendersky, A. Rosen, and A. K. Mukherjee: International Metals Reviews, 1985, vol. 30, pp. 1–16.

  31. 31.

    J. Pešička, R. Kužel, A. Dronhofer, and G. Eggeler: Acta Materialia, 2003, vol. 51, pp. 48470-4862.

  32. 32.

    S. Karashima, T. Iikubo, and H. Oikawa: Transactions JIM, 1972, vol. 13, pp. 176–181.

  33. 33.

    C. Barrett, W. D. Nix, and O. D. Sherby: ASM Transactions, 1996, vol. 59, pp. 3–15.

  34. 34.

    H. J. Frost and M. F. Ashby: Deformation-Mechanism Maps. The Plasticity and Creep of Metals and Ceramics, Pergamon Press Inc., New York, NY, 1982.

  35. 35.

    C.V. Thompson, H.J. Frost, and F. Spaepenm: Acta Metall., 1987, vol. 35(4), pp. 887–890.

  36. 36.

    W. E. Benson and J. A. Wert: Acta Materialia, 1998, vol. 105, pp. 5323–5333.

  37. 37.

    H. J. Frost, C. V. Thompson, and D. T. Walton: ActaMetallurgica et Materialia, 1992, vol. 40.4, pp. 779-793.

  38. 38.

    L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar: Surface Science, 1998, vol. 411, pp. 186–202.

Download references


The authors gratefully acknowledge support from the National Science Foundation for this work under Grants DMR-1105468 and DMR-1507417 and for equipment acquired under DMR-9974476. The authors also gratefully acknowledge H.C. Stark and Mr. Paul Aimone for generously providing the Mo rod material used for this study. The authors extend special thanks to Dr. Daniel Worthington for useful preliminary analysis of surface energy effects on DAGG initiation. The FEI XL30 ESEM and EBSD system used in this work is from the Department of Geological Sciences at the University of Texas at Austin. Sandia National Laboratories is a multi-mission laboratory managed and operated by the National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-NA0003525.

Author information

Correspondence to Philip J. Noell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 25, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noell, P.J., Taleff, E.M. Subgrains, Texture Evolution, and Dynamic Abnormal Grain Growth in a Mo Rod Material. Metall and Mat Trans A 50, 4608–4619 (2019).

Download citation