Advertisement

On the Formation of Nanoscale Intergranular Intermetallic Compound Films in a Cu-5 at. pct Zr Alloy

  • Dengshan ZhouEmail author
  • Hao Wang
  • Ondrej Muránsky
  • Charlie Kong
  • Chao YangEmail author
  • Deliang Zhang
Article
  • 21 Downloads

Abstract

Grain boundary structure and chemical composition have been shown to play important roles in plasticity, strength, creep, diffusivity, and conductivity of fine-grained metallic materials. Wetting of grain boundaries in metallic materials with nanoscale intergranular intermetallic compound films (NIICFs) is suggested to offer enhanced strength and ductility of alloys. In the current study, the NIICF wetting Cu-Zr micrograins of the matrix is observed in a Cu-5 at. pct Zr alloy produced by powder metallurgy. The underlying mechanism responsible for the formation of these NIICFs is discussed, and the effect of these films on the strength and strain-hardening capacity of the alloy is evaluated.

Notes

Acknowledgments

D.S. Zhou acknowledges the financial support from the Natural Science Foundation of China (Grant No. 51701036) to this study. D.S. Zhou also wishes to extend his thanks to Mr. Yonghui Sun and Mr. Yu Dong for their help with STEM-HAADF characterization.

References

  1. 1.
    J. Hu, Y.N. Shi, X. Sauvage, G. Sha and K. Lu: Science, 2017, vol. 355, pp. 1292-1296.CrossRefGoogle Scholar
  2. 2.
    T. Chookajorn, H.A. Murdoch and C.A. Schuh: Science, 2012, vol. 337, pp. 951-954.CrossRefGoogle Scholar
  3. 3.
    S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe and A. Hirata: Nature, 2017, vol. 544, pp. 460-64.CrossRefGoogle Scholar
  4. 4.
    N. Takata, Y. Ohtake, K. Kita, K. Kitagawa and N. Tsuji: Scr. Mater., 2009, vol. 60, pp. 590-593.CrossRefGoogle Scholar
  5. 5.
    N. Vo, D. Dunand and D. Seidman: Acta Mater., 2014, vol. 63, pp. 73-85.CrossRefGoogle Scholar
  6. 6.
    S.-H. Kim, H. Kim and N.J. Kim: Nature, 2015, vol. 518, pp. 77.CrossRefGoogle Scholar
  7. 7.
    Z. Jiao, J. Luan, M. Miller and C. Liu: Acta Mater., 2015, vol. 97, pp. 58-67.CrossRefGoogle Scholar
  8. 8.
    L. Huang, L. Geng and H. Peng: Prog. Mater. Sci., 2015, vol. 71, pp. 93-168.CrossRefGoogle Scholar
  9. 9.
    S.J. Dillon, M. Tang, W.C. Carter and M.P. Harmer: Acta Mater., 2007, vol. 55, pp. 6208-6218.CrossRefGoogle Scholar
  10. 10.
    P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer and M.P. Harmer: Acta Mater., 2014, vol. 62, pp. 1-48.CrossRefGoogle Scholar
  11. 11.
    M. Park and C.A. Schuh: Nature Commun., 2015, vol. 6, pp. 6858.CrossRefGoogle Scholar
  12. 12.
    M. Park, T. Chookajorn and C.A. Schuh: Acta Mater., 2018, vol. 145, pp. 123-133.CrossRefGoogle Scholar
  13. 13.
    F. Abdeljawad, P. Lu, N. Argibay, B.G. Clark, B.L. Boyce and S.M. Foiles: Acta Mater., 2017, vol. 126, pp. 528-539.CrossRefGoogle Scholar
  14. 14.
    M. Azimi and G. Akbari: J. Alloys Compd., 2011, vol. 509, pp. 27-32.CrossRefGoogle Scholar
  15. 15.
    M.A. Atwater, R.O. Scattergood and C.C. Koch: Mater. Sci. Eng. A, 2013, vol. 559, pp. 250-256.CrossRefGoogle Scholar
  16. 16.
    M. Azimi and G. Akbari: J. Alloys Compd., 2013, vol. 555, pp. 112-116.CrossRefGoogle Scholar
  17. 17.
    A. Khalajhedayati, Z. Pan and T.J. Rupert: Nat. Commun., 2016, vol. 7, pp. 10802.CrossRefGoogle Scholar
  18. 18.
    D. Zhou, Z. Quadir, C. Kong, H. Pan, Z. Liu, G. Sha, P. Munroe and D. Zhang: Materialia, 2018, vol. 4, pp. 268-275.CrossRefGoogle Scholar
  19. 19.
    Y. Lin, H. Wen, Y. Li, B. Wen, W. Liu and E.J. Lavernia: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2673-2688.CrossRefGoogle Scholar
  20. 20.
    Y. Lin, H. Wen, Y. Li, B. Wen, W. Liu and E.J. Lavernia: Acta Mater., 2015, vol. 82, pp. 304-315.CrossRefGoogle Scholar
  21. 21.
    H. Asgharzadeh and H.J. McQueen: Mater. Sci. Technol., 2014, vol. 31, pp. 1016-1034.CrossRefGoogle Scholar
  22. 22.
    H. Baker: ASM Handbook, ASM International, Materials Park, 1992.Google Scholar
  23. 23.
    B. Straumal, A. Mazilkin and B. Baretzky: Curr. Opin. Solid St., 2016, vol. 20, pp. 247-256.CrossRefGoogle Scholar
  24. 24.
    W.D. Kaplan, D. Chatain, P. Wynblatt and W.C. Carter: J. Mater. Sci., 2013, vol. 48, pp. 5681-5717.CrossRefGoogle Scholar
  25. 25.
    J. Zhao, J. Zhang, L. Cao, Y. Wang, P. Zhang, K. Wu, G. Liu and J. Sun: Acta Mater., 2017, vol. 132, pp. 550-564.CrossRefGoogle Scholar
  26. 26.
    A. Khalajhedayati and T.J. Rupert: JOM, 2015, vol. 67, pp. 2788-2801.CrossRefGoogle Scholar
  27. 27.
    J.D. Schuler and T.J. Rupert: Acta Mater., 2017, vol. 140, pp. 196-205.CrossRefGoogle Scholar
  28. 28.
    H. Okamoto: J. Phase Equilib. Diff., 2008, vol. 29, pp. 204-204.CrossRefGoogle Scholar
  29. 29.
    D. Zhou, X. Wang, O. Muránsky, X. Wang, Y. Xie, C. Yang and D. Zhang: Mater. Sci. Eng. A, 2018, vol. 730, pp. 238-335.Google Scholar
  30. 30.
    T. Zhu and J. Li: Prog. Mater. Sci., 2010, vol. 55, pp. 710-757.CrossRefGoogle Scholar
  31. 31.
    S. Pauly, J. Bednarčik, U. Kühn and J. Eckert: Scr. Mater., 2010, vol. 63, pp. 336-338.CrossRefGoogle Scholar
  32. 32.
    H. Kimura, A. Inoue, N. Muramatsu, K. Shin and T. Yamamoto: Mater. Trans., 2006, vol. 47, pp. 1595-1598.CrossRefGoogle Scholar
  33. 33.
    B. Straumal, X. Sauvage, B. Baretzky, A. Mazilkin and R. Valiev: Scr. Mater., 2014, vol. 70, pp. 59-62.CrossRefGoogle Scholar
  34. 34.
    S.J. Dillon, M.P. Harmer and J. Luo: JOM, 2009, vol. 61, pp. 38-44.CrossRefGoogle Scholar
  35. 35.
    M.S. El-Eskandarany, A.A. Mahday, H. Ahmed and A. Amer: J. Alloys Compd., 2000, vol. 312, pp. 315-325.CrossRefGoogle Scholar
  36. 36.
    I.A. Ovid’ko, R.Z. Valiev and Y.T. Zhu: Prog. Mater. Sci., 2018, vol. 94, pp. 462-540.CrossRefGoogle Scholar
  37. 37.
    R. Schwab: Int. J. Plasticity, 2019, vol. 113, pp. 218-235.CrossRefGoogle Scholar
  38. 38.
    Y.-H. Zhao, X.-Z. Liao, S. Cheng, E. Ma and Y.T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2280-2283.CrossRefGoogle Scholar
  39. 39.
    S. Cheng, Y. Zhao, Y. Zhu and E. Ma: Acta Mater., 2007, vol. 55, pp. 5822-5832.CrossRefGoogle Scholar
  40. 40.
    Y. Wang, M. Chen, F. Zhou and E. Ma: Nature, 2002, vol. 419, pp. 912.CrossRefGoogle Scholar
  41. 41.
    E. Ma and T. Zhu: Mater. Today, 2017, vol. 20, pp. 323-331.CrossRefGoogle Scholar
  42. 42.
    X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang and Y. Zhu: Proc. Natl. Acad. Sci., 2015, vol. 112, pp. 14501-14505.CrossRefGoogle Scholar
  43. 43.
    T. Fang, W. Li, N. Tao and K. Lu: Science, 2011, vol. 331, pp. 1587-1590.CrossRefGoogle Scholar
  44. 44.
    Y. Ling: AMP J. Technol., 1996, vol. 5, pp. 37-48.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)Northeastern UniversityShenyangChina
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  3. 3.Australian Nuclear Science and Technology OrganizationLucas HeightsAustralia
  4. 4.School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyAustralia
  5. 5.Electron Microscope UnitThe University of New South WalesSydneyAustralia
  6. 6.Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations