Advertisement

A Review of Eutectic Au-Ge Solder Joints

  • 130 Accesses

Abstract

Gold-germanium (Au-Ge) joints have been part of the electronics industry since the birth of the solid state transistor. Today they find their role as a reliable joining technology, especially for high-temperature applications. This article is a literature study reviewing Au-Ge joints: Their uses, properties, material compatibility, application techniques, and performance characteristics. The review concludes that it is possible to create high-quality and very strong Au-Ge joints with a shear strength up to 150 MPa. They are stable and reliable, showing limited degradation after thousands of hours at high temperature and thousands of thermal cycles. Joints may be used in low-stress applications up to 300 °C.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2

Reprinted with permission

Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    AT&T Archives and History Center: AT&T Archives Genesis of the Transistor, AT&T Tech Channel, New York, 1965.

  2. 2.

    The Nobel Prize in Physics 1956: http://www.nobelprize.org/nobel_prizes/physics/laureates/1956/. Accessed 13 November 2018.

  3. 3.

    United States Patent Office, 3,025,439, 1962.

  4. 4.

    United States Patent Office, 3,200,490, 1965.

  5. 5.

    K. Nishitani, O. Ishihara, H. Sawano, T. Ishii, S. Mitsui, and H. Miki (1976) Jpn. J. Appl. Phys. 16, 93–7.

  6. 6.

    M.S. Islam and P.J. McNally: Microelectron. Eng., 1998, vol. 40, pp. 35–42.

  7. 7.

    7 A.A. Iliadis, J.K. Zahurak, T. Neal, and W.T. Masselink: J. Electron. Mater., 1999, vol. 28, pp. 944–8.

  8. 8.

    V. Chidambaram, H.B. Yeung, and G. Shan: Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA, https://doi.org/10.1109/ipfa.2012.6306308.

  9. 9.

    V. Chidambaram, H.B. Yeung, and G. Shan: J. Electron. Mater., 2012, vol. 41, pp. 2107–17.

  10. 10.

    P. Ning, R. Lai, D. Huff, F. Wang, K.D.T. Ngo, V.D. Immanuel, and K.J. Karimi: IEEE Trans. Power Electron., 2010, vol. 25, pp. 16–23.

  11. 11.

    M.J. Palmer, R.W. Johnson, and B.H. Ecedept: Int. High Temp. Electron., Santa Fe, NM, 2006.

  12. 12.

    W. Sabbah, S. Azzopardi, C. Buttay, R. Meuret, and E. Woirgard: Microelectron. Reliab., 2013, vol. 53, pp. 1617–21.

  13. 13.

    V.R. Manikam and K.Y. Cheong: Components, Packag. Manuf. Technol. IEEE Trans., 2011, vol. 1, pp. 457–478.

  14. 14.

    P. Zheng: Ph.D. dissertation, Dept. Electr. Comput. Eng., Auburn Univ., Auburn, AL, 2010.

  15. 15.

    A. Drevin-Bazin, F. Lacroix, and J.F. Barbot: J. Electron. Mater., 2014, vol. 43, pp. 695–701.

  16. 16.

    S. Egelkraut, L. Frey, M. Knoerr, and A. Schletz: IEEE 12th Proc. Electron. Packag. Technol. Conf. (EPTC), Singapore, 2010, pp. 660–67.

  17. 17.

    P. Hagler, P. Henson, and R.W. Johnson: IEEE Trans. Ind. Electron., 2011, vol. 58, pp. 2673–82.

  18. 18.

    A. Hutzler, A. Tokarski, S. Kraft, S. Zischler, and A. Schletz: IEEE Electron. Compon. Technol. Conf., Orlando, FL, 2014, pp. 1700–06.

  19. 19.

    F.L.F. Lang, S. Tanimoto, H. Ohashi, and H. Yamaguchi: 2009 Eur. Microelectron. Packag. Conf., 2009, pp. 3–7.

  20. 20.

    F. Lang, H. Yamaguchi, H. Ohashi, and H. Sato: J. Electron. Mater., 2011, vol. 40, pp. 1563–71.

  21. 21.

    S. Msolli, O. Dalverny, J. Alexis, and M. Karama: Integr. Power Electron. Syst. (CIPS), 2010 6th Int. Conf., 2010, pp. 16–18.

  22. 22.

    L.A. Navarro, X. Perpina, P. Godignon, J. Montserrat, V. Banu, M. Vellvehi, and X. Jorda: IEEE Trans. Power Electron., 2014, vol. 29, pp. 2261–71.

  23. 23.

    V. Chidambaram, J. Hald, and J. Hattel: J. Alloys Compd., 2010, vol. 490, pp. 170–9.

  24. 24.

    V. Chidambaram, J. Hald, and J. Hattel: Microelectron. Reliab., 2009, vol. 49, pp. 323–30.

  25. 25.

    H. Okamoto and T.B. Massalski: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 601–10.

  26. 26.

    P. Godignon, X. Jorda, M. Vellvehi, X. Perpina, V. Banu, D. Lopez, J. Barbero, P. Brosselard, and S. Massetti: IEEE Trans. Ind. Electron., 2011, vol. 58, pp. 2582–9.

  27. 27.

    L. Ma, X. Huang, and J. Zha: Int. Conf. Electron. Packag. Technol., 2013, pp. 946–49.

  28. 28.

    R. Kisiel and Z. Szczepański: Microelectron. Reliab., 2009, vol. 49, pp. 627–9.

  29. 29.

    E. Maset, E. Sanchis-Kilders, J.B. Ejea, A. Ferreres, J. Jordán, V. Esteve, P. Brosselard, X. Jordà, M. Vellvehi, and P. Godignon: IEEE Trans. Device Mater. Reliab., 2009, vol. 9, pp. 557–62.

  30. 30.

    S. Tanimoto, K. Watanabe, H. Tanisawa, K. Matsui, and S. Sato: Electrochem. Soc. Meet., 224th, The Electrochemical Society, San Francisco, CA, 2013, p. 1.

  31. 31.

    S. Tanimoto, K. Matsui, Y. Murakami, H. Yamaguchi, and H. Okumura: in IMAPS Int. Conf. High Temp. Election. (HiTEC), IMAPS, Albuquerque, NM, 2010, pp. 32–9.

  32. 32.

    V. Banu, P. Godignon, X. Jorda, M. Vellvehi, J. Millan, P. Brosselard, D. Lopez, and J. Barbero: Proc. Int. Semicond. Conf. CAS, 2010, vol. 2, pp. 397–400.

  33. 33.

    P. Godignon, X. Jorda, V. Banu, M. Vellvehi, J. Millan, P. Brosselard, D. Lopez, and J. Barbero: Power Semicond. Devices & IC’s (ISPSD), 2010 22nd Int. Symp., 2010, pp. 351–54.

  34. 34.

    F. Lang, H. Nakagawa, and H. Yamaguchi: Gold Bull., 2013, vol. 47, pp. 109–18.

  35. 35.

    S. Tanimoto and K. Matsui: IEEE Trans. Electron Devices, 2015, vol. 62, pp. 258–69.

  36. 36.

    S. Tanimoto, H. Tanisawa, K. Watanabe, K. Matsui, and S. Sato: Mater. Sci. Forum, 2013, vol. 740–742, pp. 1040–3.

  37. 37.

    R. Chanchani, C.D. Nordquist, R.H. Olsson, T. Peterson, R. Shul, C. Ahlers, T.A. Plut, and G.A. Patrizi: Proc. Electron. Components Technol. Conf., 2011, pp. 1604–09.

  38. 38.

    E.J. Schwalbach and P.W. Voorhees: Nano Lett., 2008, vol. 8, pp. 3739–45.

  39. 39.

    Y.-C. Shih, M. Murakami, E.L. Wilkie, and A.C. Callegari: J. Appl. Phys., 1987, vol. 62, pp. 582–90.

  40. 40.

    M. Pecht: Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines: A Focus on Reliability, John Wiley & Sons, Inc., New York, 1994.

  41. 41.

    M. Schwartz: Soldering - Understanding the Basics, ASM International, Materials Park, 2014.

  42. 42.

    J. Wang, C. Leinenbach, and M. Roth: J. Alloy. Compd., 2009, vol. 481, pp. 830–6.

  43. 43.

    E.S. Tasci, M.H.F. Sluiter, A. Pasturel, and N. Jakse: Phys. Rev. B, 2010, vol. 81, pp. 1–3.

  44. 44.

    L. Magagnin, R. Maboudian, and C. Carraro: J. Phys. Chem. B, 2002, vol. 106, pp. 401–7.

  45. 45.

    D.G. Popescu and M.A. Husanu: Rapid Res. Lett., 2013, vol. 7, pp. 274–7.

  46. 46.

    D.G. Popescu and M. A. Husanu: Thin Solid Films, 2014, vol. 552, pp. 241–9.

  47. 47.

    Y. Eichhammer, J. Roeck, N. Moelans, F. Iacopi, B. Blanpain, and M. Heyns: Arch. Met. Mater., 2008, vol. 53, pp. 1133–9.

  48. 48.

    A.P. Kryshtal, R. V. Sukhov, and A.A. Minenkov: J. Alloys Compd., 2012, vol. 512, pp. 311–5.

  49. 49.

    V. Chidambaram, E.P.J. Rong, G.C. Lip, and M.W.D. Rhee: Electron. Packag. Technol. Conf., IEEE, Singapore, 2013, pp. 202–07.

  50. 50.

    F.C. Campbell: Phase Diagrams - Understanding the Basics, ASM International, Ohio, 2012.

  51. 51.

    R.P. Elliott and F.A. Shunk: Bull. Alloy Phase Diagrams, 1980, vol. 1, pp. 51–4.

  52. 52.

    D. Olsen and H. Berg: IEEE Trans. Compon. Hybrids Manuf. Technol., 1979, vol. 2, pp. 257–63.

  53. 53.

    M.F. Sousa, S. Riches, C. Johnston, and P.S. Grant: High Temp., 2010, pp. 1–6.

  54. 54.

    Z.W. Chen, J.K.L. Lai, and C.H. Shek: J. Phys. D. Appl. Phys., 2006, vol. 39, pp. 4544–8.

  55. 55.

    D. Lu and C.P. Wong, eds.: Materials for Advanced Packaging, Springer-Verlag New York Inc., 2009.

  56. 56.

    MIL-STD-202G, 2002.

  57. 57.

    V. Chidambaram, J. Hald, R. Ambat, and J. Hattel: Jom, 2009, vol. 61, pp. 59–65.

  58. 58.

    G.O. Cook and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23.

  59. 59.

    W.F. Gale and D.A. Butts: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 283–300.

  60. 60.

    W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.

  61. 61.

    W.D. MacDonald and T.W. Eagar: Met. Sci. Join., 1992, pp. 93–100.

  62. 62.

    W.D. MacDonald and T.W. Eagar: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 315–25.

  63. 63.

    L. Bernstein: J. Electrochem. Soc., 1966, vol. 113, pp. 1282–8.

  64. 64.

    L. Bernstein and H. Bartholomew: Trans. Metall. Soc. Aime, 1966, vol. 236, pp. 405–12.

  65. 65.

    T.A. Tollefsen, A. Larsson, O.M. Løvvik, and K. Aasmundtveit: Metall. Mater. Trans. B , 2012, vol. 43, pp. 397–405.

  66. 66.

    T.A. Tollefsen, O.M. Løvvik, K. Aasmundtveit, and A. Larsson: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2914–6.

  67. 67.

    K.E. Aasmundtveit, T.-T. Luu, H.-V. Nguyen, A. Larsson, and T.A. Tollefsen: Ind thjkjf jgjiof klfjefije. In: Intermetallic compounds - Formation and applications, M. Aliofkhazrai, ed., 1st edn., IntechOpen, London, 2018, pp. 43–72.

  68. 68.

    T.T. Luu, N. Hoivik, K. Wang, K.E. Aasmundtveit, and A.B. Vardøy: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5266–74.

  69. 69.

    S.A. Paknejad and S.H. Mannan: Microelectron. Reliab., 2017, vol. 70, pp. 1–11.

  70. 70.

    K.S. Siow: J. Electron. Mater., 2014, vol. 43, pp. 947–61.

Download references

Acknowledgments

We want to acknowledge the Norwegian Research Council for supporting this project (Project No.: 244915).

Author information

Correspondence to Andreas Larsson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 8, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larsson, A., Tollefsen, T.A., Løvvik, O.M. et al. A Review of Eutectic Au-Ge Solder Joints. Metall and Mat Trans A 50, 4632–4641 (2019) doi:10.1007/s11661-019-05356-0

Download citation