Advertisement

Assessing Experimental Parameter Space for Achieving Quantitative Electron Tomography for Nanometer-Scale Plastic Deformation

  • Ya-Peng Yu
  • Hiromitsu Furukawa
  • Noritaka Horii
  • Mitsuhiro MurayamaEmail author
Topical Collection: 3D Materials Science
  • 7 Downloads
Part of the following topical collections:
  1. 3D Materials Science

Abstract

Integrating in situ deformation and electron tomography (ET) techniques allows us to visualize the materials’ response to an applied stress with nanometer spatial resolution. The capability of structural, chemical, and morphological characterization in three-dimension real time and at sub-microscopic levels alleviates several persistent problems of two-dimensional imaging such as the projection effect and postmortem appearance. On the other hand, implementing deformation mechanism introduces additional experimental constraints that could influence the accuracy of the reconstructed volumes in a different way. To materialize quantitative and statistically relevant microstructure interpretation by time-resolved ET, we evaluated several key parameters such as angular tilt range, tilt increment, and reconstruction algorithms to characterize their influences on the accuracy of size and morphology reproducibility.

Notes

Acknowledgments

The microscopy was carried out in the Nanoscale Characterization and Fabrication Laboratory, Institute for Critical Technology and Applied Science, Virginia Tech. The authors would like to acknowledge Dr. W. T. Reynolds Jr. (Virginia Tech), Dr. Satoshi Hata (Kyusyu University) for their constructive discussion. Y. Y. was financially supported by the Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), a Member of the National Nanotechnology Coordinated Infrastructure (NNCI) supported by NSF (ECCS 1542100). Funding for this project was partly provided by DOE BES Geosciences (DE-FG02-06ER15786).

References

  1. 1.
    1 J. Kacher, G.S. Liu, and I.M. Robertson: Micron, 2012, vol. 43, pp. 1099–107.CrossRefGoogle Scholar
  2. 2.
    2 J. Jung, J. Lee, H.-W. Park, T. Chang, H. Sugimori, and H. Jinnai: Macromolecules, 2014, vol. 47, pp. 8761–7.CrossRefGoogle Scholar
  3. 3.
    3 B. Hudson: J. Microsc., 1973, vol. 98, pp. 396–401.CrossRefGoogle Scholar
  4. 4.
    4 E. Oveisi, A. Letouzey, D.T.L. Alexander, Q. Jeangros, R. Schäublin, G. Lucas, P. Fua, and C. Hébert: Sci. Rep., 2017, vol. 7, p. 10630.CrossRefGoogle Scholar
  5. 5.
    5 B. Modéer: Scr. Metall., 1974, vol. 8, pp. 1145–52.CrossRefGoogle Scholar
  6. 6.
    6 J.S. Barnard, J. Sharp, J.R. Tong, and P.A. Midgley: Philos. Mag., 2006, vol. 86, pp. 4901–22.CrossRefGoogle Scholar
  7. 7.
    7 W. Baumeister, R. Grimm, and J. Walz: Trends Cell Biol., 1999, vol. 9, pp. 81–5.CrossRefGoogle Scholar
  8. 8.
    8 S. Hata, S. Miyazaki, H. Miyazaki, T. Gondo, K. Kawamoto, N. Horii, K. Sato, H. Furukawa, H. Kudo, and M. Murayama: Microscopy, 2016, vol. 66, pp. 143–53.Google Scholar
  9. 9.
    9 N. Kawase, M. Kato, H. Nishioka, and H. Jinnai: Ultramicroscopy, 2007, vol. 107, pp. 8–15.CrossRefGoogle Scholar
  10. 10.
    10 D.N. Mastronarde: J. Struct. Biol., 1997, vol. 120, pp. 343–52.CrossRefGoogle Scholar
  11. 11.
    11 S. Hata, H. Miyazaki, S. Miyazaki, M. Mitsuhara, M. Tanaka, K. Kaneko, K. Higashida, K. Ikeda, H. Nakashima, S. Matsumura, J.S. Barnard, J.H. Sharp, and P.A. Midgley: Ultramicroscopy, 2011, vol. 111, pp. 1168–75.CrossRefGoogle Scholar
  12. 12.
    12 R. Leary, Z. Saghi, P.A. Midgley, and D.J. Holland: Ultramicroscopy, 2013, vol. 131, pp. 70–91.CrossRefGoogle Scholar
  13. 13.
    13 Z. Saghi, G. Divitini, B. Winter, R. Leary, E. Spiecker, C. Ducati, and P.A. Midgley: Ultramicroscopy, 2016, vol. 160, pp. 230–8.CrossRefGoogle Scholar
  14. 14.
    14 K. Sato, H. Miyazaki, T. Gondo, S. Miyazaki, M. Murayama, and S. Hata: Microscopy, 2015, vol. 64, pp. 369–75.CrossRefGoogle Scholar
  15. 15.
    15 P.A. Midgley and M. Weyland: Ultramicroscopy, 2003, vol. 96, pp. 413–31.CrossRefGoogle Scholar
  16. 16.
    16 G.T. Herman and R. Davidi: Inverse Probl., 2008, vol. 24, p. 45011.CrossRefGoogle Scholar
  17. 17.
    17 K. Sato, K. Aoyagi, and T.J. Konno: J. Appl. Phys., 2010, vol. 107, p. 24304.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Ya-Peng Yu
    • 1
  • Hiromitsu Furukawa
    • 2
  • Noritaka Horii
    • 2
  • Mitsuhiro Murayama
    • 3
    Email author
  1. 1.Institute for Critical Technology and Applied ScienceVirginia TechBlacksburgUSA
  2. 2.System In Frontier, Inc.TachikawaJapan
  3. 3.Materials Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations