Quasi-Seeding Mechanism in Lamellae Alignment of TiAl Alloys During Directional Solidification

  • Yujun Du
  • Jun ShenEmail author
  • Yilong Xiong
  • Qiudong Li
  • Hengzhi Fu


A novel quasi-seeding mechanism, in which the seed material needs to meet the following two requirements, was developed to align the lamellar microstructures of TiAl alloys during directional solidification. First, by controlling solidification condition, columnar grains within the quasi-seed ingot are solidified as the peritectic α phase rather than the primary β phase and thus the quasi-seed ingot with appropriate lamellae orientation is obtained. Second, the nucleation and growth of single γ grains are restricted when heating rate is sufficiently high and thus the high-temperature α-II grains that form upon heating have undergone the solid-phase transformation of α2/γ → α/γ → α rather than α2/γ → γ → α/γ → α. As a result, the high-temperature α-II grains have the basal planes parallel to the α2/γ lamellae within the original quasi-seed ingot and the lamellar microstructure remains unchanged after the heat treatment. Based on the mechanism, a quasi-seed of Ti-47Al-2Nb-2Cr alloy, in which the nucleation and growth of the γ phase was restricted by a rapid heating procedure, was employed to align the lamellar microstructures of the same alloy during directional solidification at different growth velocities. The room-temperature tensile properties of the directionally solidified samples were measured and the results showed that the desired lamellar microstructure obtained at 10 μm/s had a tensile strength of 558 MPa and an elongation of 6.2 pct simultaneously. The fracture behaviors of the lamellar microstructures with different orientations were checked and the relevant mechanisms were discussed correspondingly.



This work is supported by the National Natural Science Foundation of China under Grant No. 51574195, and the Research Fund of State Key Laboratory of Solidification Processing (NWPU), China under Grant No. 119-TZ-2015. It is also supported by the Doctorate Foundation of Northwestern Polytechnical University under contract No. CX201308, the China Postdoctoral Science Foundation under contract No. 2017M613234, and the postdoctoral project funding of Shaanxi province under contract No. 2017BSHQYXMZZ01.


  1. 1.
    M. Yamaguchi, H. Inui, K. Ito, Acta Mater., 2000, vol. 48, pp. 307-22.CrossRefGoogle Scholar
  2. 2.
    X.H. Wu, Intermetallics, 2006, vol. 14, pp. 1114-22.CrossRefGoogle Scholar
  3. 3.
    L.L. Rishel, N.E. Biery, R. Raban, V.Z. Gandelsman, T.M. Pollock, A.W. Cramb, Intermetallics, 1998, vol. 6, pp. 629-36.CrossRefGoogle Scholar
  4. 4.
    S.-W. Kim, Y.-S. Na, J.-T. Yeom, S.E. Kim, Y.S. Choi, Mat. Sci. Eng. A, 2014, vol. 589, pp. 140-5.CrossRefGoogle Scholar
  5. 5.
    H. Inui, M.H. Oh, A. Nakamura, M. Yamaguchi, Acta Metall. Mater., 1992, vol. 40, pp. 3095-104.CrossRefGoogle Scholar
  6. 6.
    G. Chen, Y.B. Peng, G. zheng, Z.X. Qi, M.Z. Wang, H.C. Yu, C.L. Dong, C.T. Liu, Nat. mater., 2016, vol. 15, pp. 876-81.CrossRefGoogle Scholar
  7. 7.
    J.H. Kim, S.W. Kim, H.N. Lee, M.H. Oh, H. Inui, D.M. Wee, Intermetallics, 2005, vol. 13, pp. 1038-47.CrossRefGoogle Scholar
  8. 8.
    M. Yamaguchi, D.R. Johnson, H.N. Lee, H. Inui, Intermetallics, 2000, vol. 8, pp. 511-7.CrossRefGoogle Scholar
  9. 9.
    H.N. Lee, D.R. Johnson, H. Inui, M.H. Oh, D.M. Wee, M. Yamaguchi, Acta Mater., 2000, vol. 48, pp. 3221-33.CrossRefGoogle Scholar
  10. 10.
    H.N. Lee, D.R. Johnson, H. Inui, M.H. Oh, D.M. Wee, M. Yamaguchi, Mat. Sci. Eng. A, 2002, vol. 329, pp. 19-24.CrossRefGoogle Scholar
  11. 11.
    Y.J. Du, J. Shen, Y.L. Xiong, Z. Shang, H.Z. Fu, Intermetallics, 2015, vol. 61, pp. 80-4.CrossRefGoogle Scholar
  12. 12.
    Y.J. Du, J. Shen, Y.L. Xiong, Z. Shang, L. Wang, H.Z. Fu, Mat. Sci. Eng. A, 2015, vol. 621, pp. 94-9.CrossRefGoogle Scholar
  13. 13.
    D.R. Johnson, H. Inui, M. Yamaguchi, Acta Mater., 1996, vol. 44, pp. 2523-35.CrossRefGoogle Scholar
  14. 14.
    T. Umeda, T. Okane, W. Kurz, Acta Mater., 1996, vol. 44, pp. 4209-16.CrossRefGoogle Scholar
  15. 15.
    Y.Q. Su, C. Liu, X.Z. Li, J.J. Guo, B.S. Li, J. Jia, H.Z. Fu, Intermetallics, 2005, vol. 13, pp. 267-74.CrossRefGoogle Scholar
  16. 16.
    M. Charpentier, D. Daloz, E. Gautier, G. Lesoult, A. Hazotte, M. Grange, Metall. Mater. Trans. A, 2003, vol. 34, pp. 2139-48.CrossRefGoogle Scholar
  17. 17.
    Y.-W. Kim, Acta Metall. Mater., 1992, vol. 40, pp. 1121-34.CrossRefGoogle Scholar
  18. 18.
    D.R. Johnson, H. Inui, S. Muto, Y. Omiya, T. Yamanaka, Acta Mater., 2006, vol. 54, pp. 1077-85.CrossRefGoogle Scholar
  19. 19.
    J.C. Tang, B.Y. Huang, W.S. Liu, Y.H. He, K.C. Zhou, A.H. Wu, K. Peng, W. Qin, Y.W. Du, Mater. Res. Bull., 2003, vol. 38, pp. 2019-24.CrossRefGoogle Scholar
  20. 20.
    M.C. Kim, M.H. Oh, J.H. Lee, H. Inui, M. Yamaguchi, D.M. Wee, Mat. Sci. Eng. A, 1997, vol. 239, pp. 570-6.CrossRefGoogle Scholar
  21. 21.
    U. Prasad, Q. Xu, M.C. Chaturvedi, Mat. Sci. Eng. A, 2002, vol. 329, pp. 906-13.CrossRefGoogle Scholar
  22. 22.
    D. Hu, R.R. Botten, Intermetallics, 2002, vol. 10, pp. 701-15.CrossRefGoogle Scholar
  23. 23.
    W.Z. Luo, J. Shen, Z.X. Min, H.Z. Fu, J. Cryst. Growth, 2008, vol. 310, pp. 5441-6.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yujun Du
    • 1
    • 2
  • Jun Shen
    • 1
    Email author
  • Yilong Xiong
    • 1
  • Qiudong Li
    • 1
  • Hengzhi Fu
    • 1
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Western Superconducting Technologies Co., LtdXi’anChina

Personalised recommendations