Characterization and Control of the Compromise Between Tensile Properties and Fracture Toughness in a Quenched and Partitioned Steel

  • Zhiping XiongEmail author
  • Pascal J. Jacques
  • Astrid Perlade
  • Thomas Pardoen


The enhancement of the fracture toughness is essential for opening the possible range of applications of advanced high-strength steels, while the focus in the literature is primarily on the strength–ductility compromise. A high fracture toughness is indeed needed for energy absorbing components as well as to limit edge cracking sensitivity during part forming. This study investigates the tensile properties and the fracture toughness of various quenched and partitioned microstructures. The fracture resistance is evaluated using double-edge notched tension tests. While the uniform elongation continuously increases with the retained austenite (RA) fraction, the fracture toughness shows a maximum at intermediate RA content. For the highest amount of RA, the relatively low fracture toughness is mainly attributed to the formation of brittle necklace of fresh blocky martensite in the fracture process zone due to a high stress triaxiality, inducing an intergranular fracture mode. For intermediate RA fraction, the RA morphology evolves from blocky to film type, leading to a transition from intergranular to ductile fracture mode, and the RA-to-martensite transformation contributes to a higher total work of fracture compared to tempered martensitic steel. A proper control of both the amount and morphology of RA during microstructure design is thus essential to generate the best compromise between tensile properties and fracture toughness.



This work was funded by ArcelorMittal Global R&D Maizières Products in France.


  1. 1.
    [1] J. Speer, D. Matlock, B. de Cooman, and J. Schroth: Acta Mater., 2003, vol. 51, pp. 2611-2622.CrossRefGoogle Scholar
  2. 2.
    [2] M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Acta Mater., 2001, vol. 59, pp. 6059-6068.CrossRefGoogle Scholar
  3. 3.
    [3] J. Mola and B.C. de Cooman: Scripta Mater., 2011, vol. 65, pp. 834-837.CrossRefGoogle Scholar
  4. 4.
    [4] J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219-237.CrossRefGoogle Scholar
  5. 5.
    [5] D. Edmonds, K. He, F. Rizzo, B. de Cooman, D. Matlock, and J. Speer: Mater. Sci. Eng. A, 2006, vol. 438, pp. 25-34.CrossRefGoogle Scholar
  6. 6.
    [6] E. Ariza, M. Masoumi, and A. Tschiptschin: Mater. Sci. Eng. A, 2017, vol. 713, pp. 223-233.CrossRefGoogle Scholar
  7. 7.
    [7] Y. Toji, H. Matsuda, M. Herbig, and P. Choi, D. Raabe: Acta Mater., 2014, vol. 65, pp. 215-228.CrossRefGoogle Scholar
  8. 8.
    [8] J. Speer, E. De Moor, and A. Clarke: Mater. Sci. Technol., 2005, vol. 31, pp. 3-9.CrossRefGoogle Scholar
  9. 9.
    [9] P. Huyghe, L. Malet, M. Caruso, C. Georges, and S. Godet: Mater. Sci. Eng. A, 2017, vol. 701, pp. 254-263.CrossRefGoogle Scholar
  10. 10.
    [10] E.J. Seo, L. Cho, Y. Estrin, and B.C. de Cooman: Acta Mater., 2016, vol. 113, pp. 124-139.CrossRefGoogle Scholar
  11. 11.
    [11] F. HajyAkbary, J. Sietsma, G. Miyamoto, N. Kamikawa, R.H. Petrov, T. Furuhara, and M.J. Santofimia: Mater. Sci. Eng. A, 2016, vol. 677, pp. 505-514.CrossRefGoogle Scholar
  12. 12.
    [12] E. De Moor, S. Lacroix, A. Clarke, J. Penning, and J. Speer: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2586-2595.CrossRefGoogle Scholar
  13. 13.
    [13] Z.P. Xiong, A.G. Kostryzhev, L. Chen, and E.V. Pereloma: Mater. Sci. Eng. A, 2016, vol. 677, pp. 356-366.CrossRefGoogle Scholar
  14. 14.
    [14] H. Mohrbacher: Adv. Manuf., 2013, vol. 1, pp. 28-41.CrossRefGoogle Scholar
  15. 15.
    [15] P. Efthymiadis, S. Hazra, A. Clough, R. Lakshmi, A. Alamoudi, R. Dashwood, B. Shollock: Mater. Sci. Eng. A, 2017, vol. 701, pp. 174-186.CrossRefGoogle Scholar
  16. 16.
    [16] D. Casellas, A. Lara, D. Frómeta, D. Gutiérrez, S. Molas, L. Pérez, J. Rehrl, and C. Suppan: Metall. Mater. Trans. A, 2017, vol. 48, pp. 86-94.CrossRefGoogle Scholar
  17. 17.
    [17] G. Lacroix, T. Pardoen, and P.J. Jacques: Acta Mater., 2008, vol. 56, pp. 3900-3913.CrossRefGoogle Scholar
  18. 18.
    [18] I. de Diego-Calderón, I. Sabirov, J. Molina-Aldareguia, C. Föjer, R. Thiessen, and R. Petrov: Mater. Sci. Eng. A, 2016, vol. 657, pp. 136-146.CrossRefGoogle Scholar
  19. 19.
    [19] R. Wu, W. Li, S. Zhou, Y. Zhong, L. Wang, and X. Jin: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1892-1902.CrossRefGoogle Scholar
  20. 20.
    [20] P. Jacques, Q. Furnemont, T. Pardoen, and F. Delannay: Acta Mater., 2001, vol. 49, pp. 139-152.CrossRefGoogle Scholar
  21. 21.
    [21] S. M. C. van Bohemen: Mater. Sci. Technol., 2012, vol. 28, pp. 487-495.CrossRefGoogle Scholar
  22. 22.
    [22] N. van Dijk, A. Butt, L. Zhao, J. Sietsma, S. Offerman, J. Wright, and S. van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439-5447.CrossRefGoogle Scholar
  23. 23.
    [23] J. Rice, P.C. Paris, and J.G. Merkle: ASTM STP, 1973, vol. 536, pp. 231-245.Google Scholar
  24. 24.
    T.L. Anderson: Fracture mechanics: fundamentals and applications, fourth ed., CRC press, 2017.CrossRefGoogle Scholar
  25. 25.
    [25] M.K. Hatami, T. Pardoen, G. Lacroix, P. Berke, P.J. Jacques, and T.J. Massart: J. Mech. Phys. Solids, 2017, vol. 98, pp. 201-221.CrossRefGoogle Scholar
  26. 26.
    [26] Z.P. Xiong, A.G. Kostryzhev, A.A. Saleh, L. Chen, and E.V. Pereloma: Mater. Sci. Eng. A, 2016, vol. 664, pp. 26-42.CrossRefGoogle Scholar
  27. 27.
    [27] K. Zhang, P. Liu, W. Li, Z. Guo, and Y. Rong: Mater. Sci. Eng. A, 2014, vol. 619, pp. 205-211.CrossRefGoogle Scholar
  28. 28.
    [28] E.V. Pereloma, A.A. Gazder and I.B. Timokhina: Encyclopedia of Iron, Steel and Their Alloys, Taylor and Francis Inc., New York, 2016, pp. 3088-3103.CrossRefGoogle Scholar
  29. 29.
    [29] Z.P. Xiong, A.A. Saleh, R.K.W. Marceau, A.S. Taylor, N.E. Stanford, A.G. Kostryzhev, and E.V. Pereloma: Acta Mater., 2017, vol. 134, pp. 1-15.CrossRefGoogle Scholar
  30. 30.
    [30] S. Zhang and K.O. Findley: Acta Mater., 2013, vol. 61, pp. 1895-1903.CrossRefGoogle Scholar
  31. 31.
    [31] W. Li, H. Gao, H. Nakashima, S. Hata, and W. Tian: Mater. Charact., 2016, vol. 118, pp. 431-437.CrossRefGoogle Scholar
  32. 32.
    [32] D. de Knijf, C. Föjer, L.A. Kestens, and R. Petrov: Mater. Sci. Eng. A, 2015, vol. 638, pp. 219-227.CrossRefGoogle Scholar
  33. 33.
    A. Pineau, A. Amine Benzerga, and T. Pardoen: Acta Mater., 2016, vol. 107, pp. 508-544.CrossRefGoogle Scholar
  34. 34.
    [34] T. Pardoen and J.W. Hutchinson: J. Mech. Phys. Solids, 2000, vol. 48, pp. 2467-2512.CrossRefGoogle Scholar
  35. 35.
    [35] D. Kwon and R.J. Asaro: Metall. Trans. A, 1990, vol. 21, pp. 117-134.CrossRefGoogle Scholar
  36. 36.
    [36] Z.P. Xiong, P.J. Jacques, A. Perlade and T. Pardoen: Scripta Mater., 2018, vol. 157, pp. 6-9.CrossRefGoogle Scholar
  37. 37.
    [37] Y. Li and T. Baker: Mater. Sci. Technol., 2010, vol. 26, pp. 1029-1040.CrossRefGoogle Scholar
  38. 38.
    [38] D. Tian, L.P. Karjalainen, B. Qian, and X. Chen: JSME Int. J. Ser. A, 1997, vol. 40, pp. 179-188.Google Scholar
  39. 39.
    [39] J. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda: Acta Metall., 1984, vol. 32, pp. 1779-1788.CrossRefGoogle Scholar
  40. 40.
    [40] F. Matsuda, K. Ikeuchi, H. Okada, I. Hrivnak, and H. Park: Q. J. Jpn. Weld. Soc., 1995, vol. 13, pp. 99-105.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Zhiping Xiong
    • 1
    Email author
  • Pascal J. Jacques
    • 1
  • Astrid Perlade
    • 2
  • Thomas Pardoen
    • 1
  1. 1.Institute of Mechanics, Materials and Civil Engineering, IMAPUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.ArcelorMittal Global R&D Maizières ProductsMaizières-lès-Metz CedexFrance

Personalised recommendations