Advertisement

High Temperature Oxidation and Wear Resistance of In Situ Synthesized (Ti3Al + TiB)/Ti Composites by Laser Cladding

  • Yueqiao Feng
  • Kai Feng
  • Chengwu Yao
  • Zhuguo LiEmail author
  • Junhao Sun
Article
  • 11 Downloads

Abstract

(Ti3Al + TiB)/Ti composites were prepared on Ti6Al4V by laser cladding. The microstructures of the coatings were analyzed; the high temperature wear and oxidation properties of the coatings were investigated and compared with Ti6Al4V. Ti3Al and TiB particles were in situ formed through the reaction between Ti and AlB2. The reinforcements exhibited some crystallographic orientation relationships with α-Ti matrix, and a semi-coherent interface (Ti3Al) or a coherent interface (TiB) was obtained. The weight gain of the coating under each combination of temperature and time condition was 20 to 30 pct of the value of Ti6Al4V under the same experimental parameters. A denser and well-bonded TiO2 + Al2O3 layer was formed, effectively hindering the oxygen diffusion compared with the TiO2 layer on Ti6Al4V. EBSD result showed that the Al2O3 mainly assembled into clusters and located close to the interface while the outer area of the oxidation layer was mainly TiO2. The friction coefficients and wear losses of the coatings were lower than those of the substrates at 300 °C to 750 °C. The oxidation was a crucial factor affecting the wear performance at high temperatures. The protective effect of the TiO2 + Al2O3 layer and the formation of transfer films on the worn surface contributed to the improved wear resistance of the coating.

Notes

Acknowledgment

This work was supported by the National Key R&D Program of China (No. 2018YFB0407300).

References

  1. 1.
    H.X. Zhang, H.J. Yu, C.Z. Chen, J.J. Dai: Surf. Rev. Lett., 2018, vol. 2, pp. 1-10.Google Scholar
  2. 2.
    Y.H. Lin, Y.P. Lei, H.G. Fu, J. Lin: Mater. Des., 2015, vol. 80, pp. 82-8.CrossRefGoogle Scholar
  3. 3.
    R. Song, J. Li, J.Z. Shao, L.L. Bai, J.L. Chen, C.C. Qu: Appl. Surf. Sci., 2015, vol. 355, pp. 298-309.CrossRefGoogle Scholar
  4. 4.
    Y.H. Diao, K.M. Zhang: Appl. Surf. Sci., 2015, vol. 352, pp. 163-8.CrossRefGoogle Scholar
  5. 5.
    S.J. Qu, S.Q. Tang, A.H. Feng, C. Feng, J. Shen, D.L. Chen: Acta Mater., 2018, vol. 148, pp. 300-10.CrossRefGoogle Scholar
  6. 6.
    A. Kanjer, L. Lavisse, V. Optasanu, P. Berger, C. Gorny, P. Peyre, F. Herbst, O. Heintz, N. Geoffroy, T. Montesin, and M.C. Marco de Lucas: Surf. Coat. Technol., 2017, vol. 326, pp. 146–55.Google Scholar
  7. 7.
    J.J. Dai, J.Y. Zhu, C.Z. Chen, F. Weng: J. Alloys Compd., 2016, vol. 685, pp. 784-98.CrossRefGoogle Scholar
  8. 8.
    G.Y. Ma, S. Yan, D.J. Wu, Q.Y. Miao, M.R. Liu, F.Y. Niu: Ceram. Int., 2017, vol. 43, pp. 9622-9.CrossRefGoogle Scholar
  9. 9.
    O.B. Kovalev, D.V. Bedenko, A.V. Zaitsev: Appli. Math. Modell., 2018, vol. 57, pp. 339-59.CrossRefGoogle Scholar
  10. 10.
    Jyotsna Dutta Majumdar, Silja Katharina Rittinghaus, Konrad Wissenbach, Daniel Höche, Carsten Blawert, Andreas Weisheit: Opt. Laser Technol., 2018, vol. 106, pp. 182-90.CrossRefGoogle Scholar
  11. 11.
    Y.H. Lin, J.H. Yao, L. Wang, Q.L. Zhang, X.Q. Li, Y.P. Lei, H.G. Fu: J. Mater. Eng. Perform., 2018, vol. 27, pp. 1876-89.CrossRefGoogle Scholar
  12. 12.
    C.Y. Yang, X. Cheng, H.B. Tang, X.J. Tian, D. Liu: Surf. Coat. Technol., 2018, vol. 337, pp. 97-103.CrossRefGoogle Scholar
  13. 13.
    Z.Y. Zhou, X.B. Liu, S.G. Zhuang, M. Wang, Y.S. Luo, R. Tu, S.F. Zhou: Opt. Laser Technol., 2019, vol. 109, pp. 99-109.CrossRefGoogle Scholar
  14. 14.
    C. Huang, Y.Z. Zhang, J.Y. Shen, Rui Vilar: Surf. Coat. Technol., 2011, vol. 206, pp. 1389-95.CrossRefGoogle Scholar
  15. 15.
    Iu.N. Maliutina, H. Si-Mohand, J. Sijobert, Ph. Bertrand, D.V. Lazurenko, I.A. Bataev: Surf. Coat. Technol., 2017, vol. 319, pp. 136–44.Google Scholar
  16. 16.
    Y.H. Lv, J. Li, Y.F. Tao, L.F. Hu: Appl. Surf. Sci., 2017, vol. 402, pp. 478-94.CrossRefGoogle Scholar
  17. 17.
    B.J. Kooi, Y.T. Pei, J. Th. M. De Hosson: Acta Mater., 2003, vol. 51, pp. 831-45.CrossRefGoogle Scholar
  18. 18.
    Y.Q. Feng, K. Feng, C.W. Yao, Z.G. Li, J.H. Sun: Mater. Des., 2018, vol. 157, pp. 258-72.CrossRefGoogle Scholar
  19. 19.
    S. Amirkhanlou, S.X. Ji, Y.J. Zhang, D. Watson, Z.Y. Fan: J. Alloys Compd., 2017, vol. 694, pp. 313–24.Google Scholar
  20. 20.
    Y.F. Li, C. Chen, T.F. Han, J. Ranabhat, X.M. Feng, Y.F. Shen: J. Alloys Compd., 2017, vol. 697, pp. 268–81.Google Scholar
  21. 21.
    [21] B. Chalmers, Physical Metallurgy, John Wiley & Sons, New York, 1959.Google Scholar
  22. 22.
    [dataset] The Materials Project. https://materialsproject.org/.
  23. 23.
    P.R. Roberge, Handbook of Corrosion Engineering, McGraw-Hill, New York, 2000.Google Scholar
  24. 24.
    J.H. Luan, Z.B. Jiao, G. Chen, C.T. Liu: J. Alloys Compd., 2014, vol. 602, pp. 235-40.CrossRefGoogle Scholar
  25. 25.
    J.J. Dai, F.Y. Zhang, A.M. Wang, H.J. Yu, C.Z. Chen: Surf. Coat. Technol., 2017, vol. 309, pp. 805-813.CrossRefGoogle Scholar
  26. 26.
    X. Li, X.Y. Peng, Y.L. Duan, L.G. Zhang, Y.R. Zhao, X.W. Wang, G.F. Xu, Thermal oxidation behavior of commercial purity titanium at high temperature. China J. Nonferr. Met., 2013, vol. 23 (8), pp. 2190-9.CrossRefGoogle Scholar
  27. 27.
    M. Yoshihara, K. Miura: Intermetallics, 1995, vol. 3, pp. 351-63.CrossRefGoogle Scholar
  28. 28.
    M.G. Fontana, Corrosion Engineering, third ed., McGraw-Hill, New York, 1986.Google Scholar
  29. 29.
    A. Ebach Stahl, C. Eilers, N. Laska, R. Braun: Surf. Coat. Technol., 2013, vol. 223, pp. 24–31.Google Scholar
  30. 30.
    C.H. Xu, W. Gao: Mat. Res. Innovat., 2000, vol. 3, pp. 231-5.CrossRefGoogle Scholar
  31. 31.
    M. Čekada, P. Panjan, B. Navinšek, F. Cvelbar: Vacuum, 1999, vol. 52, pp. 461-7.CrossRefGoogle Scholar
  32. 32.
    Claus Moseke, Christian Lehmann, Tobias Schmitz, Friedrich Reinert, Jürgen Groll and Uwe Gbureck: Curr. Nanosci., 2013, vol. 9, pp. 132-8.Google Scholar
  33. 33.
    Samuel Leleu, Bertrand Rives, Jéròme Bour, Nicolas Causse, Nadine Pébère:Electrochim. Acta, 2018, vol. 290, pp. 586-94.CrossRefGoogle Scholar
  34. 34.
    L. Goyal, V. Chawla, and J.S. Hundal: J. Mater. Eng. Perform., 2017, vol. 26 (11), pp. 5481–94.Google Scholar
  35. 35.
    A.R. Mirak, C.J. Davidson, J.A. Taylor: Appl. Surf. Sci., 2014, vol. 301, pp. 91-8.CrossRefGoogle Scholar
  36. 36.
    H.E. McGannon, in: The Making, Shaping and Treating of Steel, United States Steel Corp, USA, 1964, pp. 1131–40.Google Scholar
  37. 37.
    V. Maurice, G. Despert, S. Zanna, P. Josso, M.P. Bacos, P. Marcus: Acta Mater., 2007, vol. 55, pp. 3315-25.CrossRefGoogle Scholar
  38. 38.
    F.P. Ping, Q.M. Hu, A.V. Bakulin, S.E. Kulkova, R. Yang: Intermetallics, 2016, vol. 68, pp. 57-62.CrossRefGoogle Scholar
  39. 39.
    S. Taniguchi, T. Shibata, and S. Itoh: Mater. Trans., JIM, 1991, vol. 32, pp. 151–56.Google Scholar
  40. 40.
    Y.X. Qin, W.J. Lv, D. Xu, D. Zhang: China J. Nonferr. Met., 2005, vol. 15, pp. 352-7.Google Scholar
  41. 41.
    Y. Liu, F. Yang, Y. Zhang, J.P. Xiao, L. Yu, Q.F. Liu, Y.X. Ning, Z.W. Zhou, H.Chen, W.G. Huang, P. Liu, X.H. Bao: Nat. Commun., 2017, vol. 8, pp. 14459.CrossRefGoogle Scholar
  42. 42.
    T.K. Roy, R. Balasubramaniam, A. Ghosh: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3993-4002.CrossRefGoogle Scholar
  43. 43.
    Oxana Ostrovskaya, Claudio Badini, Giorgio Baudana, Elisa Padovano, Sara Biamino: Intermetallics, 2018, vol. 93, pp. 244-50.CrossRefGoogle Scholar
  44. 44.
    Robabeh Jafari, Beitallah Eghbali: J. Alloys Compd., 2018, vol. 74, pp. 1030-9.CrossRefGoogle Scholar
  45. 45.
    R.G. Reddy, X. Wen, M. Divakar: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2357-61.CrossRefGoogle Scholar
  46. 46.
    S.A. Kekare, P.B. Aswath: J. Mater. Sci., 1997, vol. 32, pp. 2485-99.CrossRefGoogle Scholar
  47. 47.
    N.R. He, H.X. Li, L. Ji, X.H. Liu, H.D. Zhou, J.M. Chen: Tribol. Int., 2016, vol. 98, pp. 133-43.CrossRefGoogle Scholar
  48. 48.
    M.N. Gardos, S.H. Hong, W.O. Winer: Tribol. Trans., 1988, vol. 31, pp. 427-36.CrossRefGoogle Scholar
  49. 49.
    M.H. Staia, M. D’Alessandria, D.T. Quinto, F. Roudet, M.M. Astort: J. Phys.: Condens. Matter, 2006, vol. 18(32), p. S1727.Google Scholar
  50. 50.
    Z.T. Wu, P. Sun, Z.B. Qi, B.B. Wei, Z.C. Wang: Vacuum, 2017, vol. 135, pp. 34-43.CrossRefGoogle Scholar
  51. 51.
    Alixe Dréano, Siegfried Fouvry, Gaylord Guillonneau: Tribol. Int., 2018, vol. 125, pp. 128-40.CrossRefGoogle Scholar
  52. 52.
    S.X. Wang, Q. Zhao, D.X. Liu, N. Du: Surf. Coat. Technol., 2015, vol. 272, pp. 343-9.CrossRefGoogle Scholar
  53. 53.
    G. Bolelli, A. Candeli, L. Lusvarghi, A. Ravaux, K. Cazes, A. Denoirjean: Wear, 2015, vol. 344-345, pp. 69-85.CrossRefGoogle Scholar
  54. 54.
    X.Y. Li, B. Tang: Rare Metal Mater. Eng., 2003, vol. 32(7), pp. 506–09.Google Scholar
  55. 55.
    C.C. Qu, J. Li, L.L. Bai, J.Z. Shao, R. Song, J.L. Chen: J. Alloys Compd., 2015, vol. 644, pp. 450-63.CrossRefGoogle Scholar
  56. 56.
    Z.F. Xiang, X.B. Liu, J. Ren, J. Luo, S.H. Shi, Y. Chen, G.L. Shi, S.H. Wu: Appl. Surf. Sci., 2014, vol. 313, pp. 243-50.CrossRefGoogle Scholar
  57. 57.
    Sima A. Alidokht, Venkata Naga Vamsi Munagala, Richard R. Chromik: Surf. Coat. Technol., 2015, vol. 268, 24-9.CrossRefGoogle Scholar
  58. 58.
    D.J. Kong, B.G. Zhao: J. Alloys Compd., 2017, vol. 705, pp. 700-7.CrossRefGoogle Scholar
  59. 59.
    Y.K. Qin, D.S. Xiong, J.L. Li, Q.T. Jin, Y. He, R.C. Zhang, Y.R. Zou: Mater. Des., 2016, vol. 107, pp. 311-21.CrossRefGoogle Scholar
  60. 60.
    Iwona Koltsov, Julita Smalc-Koziorowska, Marta Prze´sniak-Welenc, Maria Małysa, Giora Kimmel, Jessica McGlynn, Alexey Ganin, Swietlana Stelmakh: Materials, 2018, vol. 11(5), 829-47.CrossRefGoogle Scholar
  61. 61.
    P.G. Li, M. Lei, W.H. Tang: Mater. Lett., 2010, vol. 64, pp. 161-3.CrossRefGoogle Scholar
  62. 62.
    Z.Y. Sun, D.K. Zhou, J.H. Du, Y.X. Xie: Appl. Surf. Sci., 2017, vol. 420, pp. 489-95.CrossRefGoogle Scholar
  63. 63.
    J. Hu, Z.C. Guan, Y. Liang, J.Z. Zhou, Q. Liu, H.P. Wang, H. Zhang, R.G. Du: Corros. Sci., 2017, vol. 125, pp. 59-67.CrossRefGoogle Scholar
  64. 64.
    Q.Y. Zhang, H.Y. Ding, G.H. Zhou, X.D. Guo, M. Zhang, N.L. Li, H.B. Wu, M.J. Xia: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 220-33.CrossRefGoogle Scholar
  65. 65.
    M. Pellizzari, D. Cescato, M.G. De Flora: Wear, 2009, vol. 267, pp. 467-75.CrossRefGoogle Scholar
  66. 66.
    S.C. Sharma, B. Anand, M. Krishna: Wear, 2000, vol. 241, pp. 33-40.CrossRefGoogle Scholar
  67. 67.
    M.C. Tian: Masteral dissertation, China University of Mining and Technology, Beijing, May 2014.Google Scholar
  68. 68.
    T. Dong: Masteral dissertation, Kuming University of Science and Technology, Kunming, April, 2017.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yueqiao Feng
    • 1
    • 2
  • Kai Feng
    • 1
    • 2
  • Chengwu Yao
    • 1
    • 2
  • Zhuguo Li
    • 1
    • 2
    • 3
    Email author
  • Junhao Sun
    • 1
    • 2
  1. 1.Shanghai Key Laboratory of Materials Laser Processing and Modification, E-202B, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Collaborative Innovation Center for Advanced Ship and Deep-Sea ExplorationShanghaiChina
  3. 3.Shanghai Innovation Institute for MaterialsShanghaiChina

Personalised recommendations