A Novel W-Skeleton-Reinforced Al Matrix Composite by Consolidating a Newly Developed Core–Shell-Structured W-Coated Al Powder

  • Z. H. Xiong
  • Y. F. YangEmail author
  • K. Kondoh
  • R. D. K. Misra


A uniform core–shell-structured W-coated Al powder was efficiently prepared by using fluidized bed chemical vapor deposition. The deposited W prevented the defluidization of Al powder and thereby enabled the controlled preparation of core–shell powder with different W-contents. Both the shell and activated sintering of the deposited nano-sized W particles contributed to the formation of a network W-skeleton in the composite. Compared with the W particles and/or aggregates formed from the powder mixture, the formation of W-skeleton which has better interface bonding with the Al matrix may create an excellent and continuous seepage pathway for electrons, resulting in superior electrical conductivity. In addition, the uniform W-skeleton structure led to enhanced tensile strength but a lower ductility. However, the negative response of continuous W-skeleton to the ductility can be ignored when the width of W-skeleton was in the 200 to 300 nm range. The W-content was optimized at 5 wt pct to obtain a good combination of mechanical properties and electrical conductivity.



The work was supported by Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC045) and National Key Research and Development Program of China (No. 2018YFB1105100). This work was also supported by Key Laboratory of Automobile Materials Ministry of Education, China, and the Joint Usage/Research Center on Joining and Welding, Osaka University. Professor R.D.K. Misra acknowledges continued collaboration with the group and in providing guidance.


  1. 1.
    E. M. Sharifi, F. Karimzadeh and M. H. Enayati, J. Alloys Compd., 2010, vol. 502, pp. 508-512.CrossRefGoogle Scholar
  2. 2.
    S. L. Zhang, J. Yang, B. R. Zhang, Y. T. Zhao, G. Chen, X. X. Shi and Z. P. Liang, J. Alloy Compd., 2015, vol. 639, pp. 215-223.CrossRefGoogle Scholar
  3. 3.
    S. Mula, P. Padhi, S. C. Panigrahi, S. K. Pabi and S. Ghosh, Mater. Res. Bull., 2009, vol. 44, pp. 1154-1160.CrossRefGoogle Scholar
  4. 4.
    Z. W. Wang, M. Song, C. Sun, D. H. Xiao and Y. H. He, Mater. Sci. Eng. A, 2010, vol. 527, pp. 6537-6542.CrossRefGoogle Scholar
  5. 5.
    N. Fatchurrohman, S. Sulaiman, M. K. A. Ariffin and B. T. H. T Baharuddin, J. Eng. Sci. Technol., 2012, vol. 7, pp. 33-36.Google Scholar
  6. 6.
    Ehsan Ghasali, Amirhossein Pakseresht, Ali Rahbari, Hossein Eslami-shahed, Masoud Alizadeh and Touradj Ebadzadeh, J. Alloy Compd., 2016, vol. 666, pp. 366-371.CrossRefGoogle Scholar
  7. 7.
    M. Cabeza, I. Feijoo, P. Merino, G. Pena, M. C. Pérez, S. Cruz and P. Rey, Powder Technol., 2017, vol. 321, pp. 31-43.CrossRefGoogle Scholar
  8. 8.
    Guoqiang Huang, Yifu Shen, Rui Guo and Wei Guan, Mater. Sci. Eng. A, 2016, vol. 674, pp. 504-513.CrossRefGoogle Scholar
  9. 9.
    C. Lee, L.E. Long and P.L. Leung, Google Patents, 2002, Patent No.: US 6,482,521 B1.Google Scholar
  10. 10.
    J. Catani and D. Payan, Proc. IEEE Int. Conf. Solid Dielectr., 2004, pp. 917–927.Google Scholar
  11. 11.
    E. Lassner and W.-D. Schubert, In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer US: Boston, MA, 1999, pp. 1–59.Google Scholar
  12. 12.
    V. Philipps, J. Nucl. Mater., 2011, vol. 415, pp. S2-S9.CrossRefGoogle Scholar
  13. 13.
    T. Sarmah, N. Aomoa, G. Bhattacharjee, S. Sarma, B. Bora, D. N. Srivastava, H. Bhuyan, M. Kakati and G. De Temmerman, J. Alloys Compd., 2017, vol. 725, pp. 606-615.CrossRefGoogle Scholar
  14. 14.
    Lafeng Guo, Zhimin Zhang, Baocheng Li and Yong Xue, Mater. Des., 2014, vol. 64, pp. 667-674.CrossRefGoogle Scholar
  15. 15.
    Mahdi Rafiei, Saeed Khademzadeh and Nader Parvin, J. Alloy Compd., 2010, vol. 489, pp. 224-227.CrossRefGoogle Scholar
  16. 16.
    L. Cadoret, N. Reuge, S. Pannala, M. Syamlal, C. Rossignol, J. Dexpert-Ghys, C. Coufort and B. Caussat, Powder Technol., 2009, vol. 190, pp. 185-191.CrossRefGoogle Scholar
  17. 17.
    Danqing Yi, Pengchao Yu, Bin Hu, Huiqun Liu, Bin Wang and Yong Jiang, Mater. Des., 2013, vol. 52, pp. 572-579.CrossRefGoogle Scholar
  18. 18.
    Wenge Chen, Yingge Shi, Longlong Dong, Lijian Wang, Hanyan Li and Yongqing Fu, J. Alloy Compd., 2017, vol. 728, pp. 196-205.CrossRefGoogle Scholar
  19. 19.
    C. H. See and A. T. Harris, Ind. Eng. Chem. Res., 2007, vol. 46, pp. 997-1012.CrossRefGoogle Scholar
  20. 20.
    P. Rodriguez, B. Caussat, C. Ablitzer, X. Iltis and M. Brothier, Chem. Eng. Res. Des., 2013, vol. 91, pp. 2477-2483.CrossRefGoogle Scholar
  21. 21.
    C. Vahlas, B. Caussat, P. Serp and G. N. Angelopoulos, Mater.Sci.Eng.R, 2006, vol. 53, pp. 1-72.CrossRefGoogle Scholar
  22. 22.
    S. Balaji, J. Du, C. M. White and B. E. Ydstie, Powder Technol., 2010, vol. 199, pp. 23-31.CrossRefGoogle Scholar
  23. 23.
    Lei Zhang, Fengxia Xin, Zhan Du, Maoqiao Xiang, Yafeng Yang, Qingshan Zhu and Yu Shi, J. Am. Ceram. Soc., 2019, vol. 102, pp. 1599-1607.Google Scholar
  24. 24.
    JAM Ammerlaan, DRM Boogaard, PJ van der Put and J Schoonman, Appl. Surf. Sci., 1991, vol. 53, pp. 24-29.CrossRefGoogle Scholar
  25. 25.
    SE Golunski, Platinum Met. Rev., 2007, vol. 51, pp. 162-162.CrossRefGoogle Scholar
  26. 26.
    R Li, WG Chen and L Wang, Chin J Rare Met, 2013, vol. 37, p. 243.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Z. H. Xiong
    • 1
  • Y. F. Yang
    • 1
    • 2
    Email author
  • K. Kondoh
    • 3
  • R. D. K. Misra
    • 4
  1. 1.State Key Laboratory of Multiphase Complex SystemsInstitute of Process Engineering, Chinese Academy of SciencesBeijingP.R. China
  2. 2.University of Chinese Academy of SciencesBeijingP.R. China
  3. 3.Joining and Welding Research InstituteOsaka UniversityOsakaJapan
  4. 4.Department of Metallurgical, Materials and Biomedical EngineeringUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations