Phase-Equilibrium Investigation of the Al-Cr-Er Ternary System at 773 K (500 °C)

  • Chengxia Wei
  • Yongzhong ZhanEmail author


Phase relations in the Al-Cr-Er ternary system at 773 K (500 °C) were investigated by means of powder X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscope equipped with energy dispersive spectrometer (SEM-EDS). An isothermal section at this temperature was experimentally constructed covering the whole concentration range. Two ternary compounds, namely, Al8Cr4Er and Al43Cr4Er6 were confirmed to exist at this temperature. The results show that there were 15 single-phase regions, 28 two-phase regions, and 14 three-phase regions in the studied isothermal section. The solubility of Er in intermediate phases (i.e., Al7Cr, Al9Cr4, Al8Cr5, and AlCr2) at the Al-Cr side is lower than 1 at. pct, whereas the solubility of Cr in Al-Er binary intermetallic (except the Al3Er phase) is about 1 to 3 at. pct. In addition, combining DSC results with SEM-EDS analysis, it is found that Al17Er2 phase does not exist in the present experimental condition.



This research work is supported by the National Key R&D Program of China (2016YFB0301400), the National Natural Science Foundation of China (51761002), the Guangxi Natural Science Foundation (2018JJD160006), the Training Plan of High-Level Talents of Guangxi University (XMPZ160714), and the research project of Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials (GXYSSF1807).


  1. 1.
    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller: Mater. Sci. Eng. A, 2000, vol. 280, pp. 102–07.CrossRefGoogle Scholar
  2. 2.
    A. May, M.A. Belouchrani, S. Taharboucht, A. Boudras: Procedia Engineering, 2010, vol. 2(1), pp. 1795–1804.CrossRefGoogle Scholar
  3. 3.
    H.C. Fang, H. Chao, K.H. Chen, Mater. Sci. Eng. A, 2014, vol. 610, pp. 10–16.CrossRefGoogle Scholar
  4. 4.
    W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book, eighth ed., Elsevier, Oxford, 2004.Google Scholar
  5. 5.
    D. Vojtech, J. Verner, J. Serak, F. Simancik, M. Balog, J. Nagy: Mater. Sci. Eng. A, 2007, vol. 458, pp. 371–80.CrossRefGoogle Scholar
  6. 6.
    E. Ura-Binczyk, N. Homazava, A. Uirich, R. Hauert, M. Lewandowska, K.J. Kurzydlowski, P. Schmutz: Corros. Sci., 2011, vol. 53, pp. 1825–37.CrossRefGoogle Scholar
  7. 7.
    F. Rovere, D. Music, J.M. Schneider, P.H. Mayrhofer: Acta Mater., 2010, vol. 58, pp. 2708–15.CrossRefGoogle Scholar
  8. 8.
    W.M. Seidl, M. Bartosik, S. Kolozsvari, H. Bolvardi, P.H. Mayrhofer: Surf. Coat. Tech., 2018, vol. 347, pp. 427–33.CrossRefGoogle Scholar
  9. 9.
    F. Rosalbino, E. Angelini, S.D. Negri, A. Saccone, S. Delfino: Intermetallics, 2003, vol. 11, pp. 435–41.CrossRefGoogle Scholar
  10. 10.
    H. Bo, L.B. Liu, Z.P. Jin: J. Alloys Compd., 2010, vol. 490, pp. 318–25.CrossRefGoogle Scholar
  11. 11.
    W.T. Wang, X.M. Zhang, Z.G. Guo, Y.Z. Jia, L.Y. Ye, D.W. Zheng, L. Liu: J. Alloys Compd., 2010, vol. 491, pp. 366–71.CrossRefGoogle Scholar
  12. 12.
    W.J. Kim, J.K. Kim, H.K. Kim, J.W. Park, Y.H. Jeong: J. Alloys Compd., 2008, vol. 450, pp. 222–28.CrossRefGoogle Scholar
  13. 13.
    W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel, K. Marthinsen: J. Alloys Compd., 2009, vol. 470, pp. 107–10.CrossRefGoogle Scholar
  14. 14.
    W.-S. Lee, T.-H. Chen, C.-F. Lin, M.-S. Chen: J. Alloys Compd., 2010, vol. 493, pp. 580–89.CrossRefGoogle Scholar
  15. 15.
    F. Rosalbino, E. Angelini, S.D. Negri, A. Saccone, S. Delfino: Intermetallics, 2005, vol. 13, pp. 55–60.CrossRefGoogle Scholar
  16. 16.
    R.A. Karnesky, D.C. Dunand, D.N. Seidman: Acta Mater., 2009, vol. 57, pp. 4022–31.CrossRefGoogle Scholar
  17. 17.
    S.P. Wen, Z.B. Xing, H. Huang, B.L. Li, W. Wang, Z.R. Nie: Mater. Sci. Eng. A, 2009, vol. 516, pp. 42–49.CrossRefGoogle Scholar
  18. 18.
    O.Y. Emes-Mysenko: Visn. Lviv. Univ. Ser. Chem., 1971, vol. 12, pp. 12.Google Scholar
  19. 19.
    R.M. Rykhal, O.S. Zarechnyuk, O.P. Mats’kiv: Visn. Lviv. Univ. Ser. Chem., 1979, vol. 21, pp. 46.Google Scholar
  20. 20.
    Y. Verbovytsky, T. Mika, B. Kotur, Prace Naukowe WSP. Czestochowa, Chemia i ochrona srodowiska, 2005, vol. 10, pp. 91–97.Google Scholar
  21. 21.
    O.S. Zarechnyuk, R.M. Rykhal: Visn. Lviv. Univ. Ser. Chem., 1974, vol. 16, pp. 5.Google Scholar
  22. 22.
    O.S. Zarechnyuk, R.M. Rykhal, N.V. German: Visn. Lviv. Univ. Ser. Chem., 1971, vol. 12, pp. 10.Google Scholar
  23. 23.
    B.Y. Kotur, E. Gratz, in: K.A. Gschneidner Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, vol. 27, Elsevier Science B.V., Amsterdam, 1999, pp. 33–553.Google Scholar
  24. 24.
    M.X. Ling, Y. Liang, S.J. Wei, Y. Liu, M.J. Pang, Y.Z. Zhan: J. Phase Equilib., 2012, vol. 33, pp. 203–09.CrossRefGoogle Scholar
  25. 25.
    V. Raghavan: J. Phase Equilib., 2012, vol. 33, pp. 474–75.CrossRefGoogle Scholar
  26. 26.
    Y. Liang, S.J. Wei, M.X. Ling, Y. Liu, M.J. Pang, Y.Z. Zhan, W.B. Zhou: Int. J. Mater. Res., 2013, vol. 104, pp. 1233–39.CrossRefGoogle Scholar
  27. 27.
    M.J. Pang, Y.Z. Zhan, Y. Du: J. Solid State Chem., 2013, vol. 198, pp. 344–56.CrossRefGoogle Scholar
  28. 28.
    O. Moze, R.M. Ibberson, R. Caciuffo, K.H.J. Buschow: J. Less common Met., 1990, vol. 166, pp. 329–34.CrossRefGoogle Scholar
  29. 29.
    V.M.T. Thiede, W. Jeitschko, S. Niemann, T. Ebel: J. Alloys Compd., 1998, vol. 267, pp. 23–31.CrossRefGoogle Scholar
  30. 30.
    S. Niemann, W. Jeitschko: J. Solid State Chem., 1995, vol. 116, pp. 131–35.CrossRefGoogle Scholar
  31. 31.
    A.J. Bradley, S.S. Lu: Int. J. Mater. Res., 1937, vol. 60, pp. 319–37.Google Scholar
  32. 32.
    J.J. Ramon, D. Shechtman, S.F. Dirnfeld: Scripta Metal. Mater., 1990, vol. 24, pp. 1087–91.Google Scholar
  33. 33.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams. ASM International, Materials Park, 1990.Google Scholar
  34. 34.
    W. Koster, E. Wachtel, K. Grube: Z. Metallkd., 1963, vol. 54, pp. 393–401.Google Scholar
  35. 35.
    G.V. Raynor, K. Little: J. Jpn. I. Met., 1945, vol. 71, pp. 481–89.Google Scholar
  36. 36.
    J.L. Murray: J. Phase Equilib., 1998, vol. 19, pp. 367–75.CrossRefGoogle Scholar
  37. 37.
    T. Helander, O. Tolochko: J. Phase Equilib., 1998, vol. 20, pp. 57–60.CrossRefGoogle Scholar
  38. 38.
    B. Grushko, B. Przepiorzynski, E. Kowalska-Strzeciwilk, M. Surowiec: J. Alloys Compd., 2006, vol. 420, pp. L1–L4.CrossRefGoogle Scholar
  39. 39.
    T. Tokunaga, H. Ohtani, M. Hasebe: Mater. Sci. Forum., 2007, vol. 539-543, pp. 2407–12.CrossRefGoogle Scholar
  40. 40.
    M.J. Cooper: Acta Crystallogr., 1959, vol. 13, pp. 257–63.CrossRefGoogle Scholar
  41. 41.
    H. Okamoto: J. Phase Equilib., 2008, vol. 29, pp. 112–13.CrossRefGoogle Scholar
  42. 42.
    D. Liu, R.H. Wang, Y.Y. Ye: Phys Rev., 1991, vol. 43, pp. 4648–52.CrossRefGoogle Scholar
  43. 43.
    A. Almeida, R. Vilar: Scripta Mater., 2010, vol. 63, pp. 811–14.CrossRefGoogle Scholar
  44. 44.
    L.A. Bendersky, R.S. Roth, J.T. Ramon, D. Shechtman: Metall. Trans. A, 1991, vol. 22, pp 5–10.CrossRefGoogle Scholar
  45. 45.
    M. Audier, M. Durand-Charre, E. Lacau, H. Klein: J. Alloys Compd., 1995, vol. 220, pp. 225–30.CrossRefGoogle Scholar
  46. 46.
    K. Mahdouk, J.-C. Gachon: J. Phase Equilib., 2000, vol. 21, pp. 157–66.CrossRefGoogle Scholar
  47. 47.
    J. G, C. Neto, S. Gama, C.A. Ribeiro: J. Alloys Compd., 1992, vol. 182, pp. 271–80.Google Scholar
  48. 48.
    B.B. Cao, K.H. Kuo: J. Alloys Compd., 2008, vol. 458, pp. 238–47.CrossRefGoogle Scholar
  49. 49.
    K.Y. Wen, Y.L. Chen, K.H. Kuo: Metall. Trans. A, 1992, vol. 23, pp. 2437–45.CrossRefGoogle Scholar
  50. 50.
    C.B. Shoemaker, D.A. Keszler, D.P. Shoemaker: Acta Crystallogr. A, 1989, vol. 45, pp. 13–20.CrossRefGoogle Scholar
  51. 51.
    K. Wen, Y. Chen, K. Kuo: Metall. Trans. A, 1992, vol. 29, pp. 2437.CrossRefGoogle Scholar
  52. 52.
    C.Z. Fan, C. Liu, IUCrData, 2018. 3(2).Google Scholar
  53. 53.
    B. Grushko, E. Kowalska-Strzeciwilk, B. Przepiorzynski, M. Surowiee: J. Alloys Compd., 2005, vol. 402, pp. 98–104.CrossRefGoogle Scholar
  54. 54.
    H. Wu, M. Zhang, B.J. Xu, G.P. Ling: J. Alloys Compd., 2014, vol. 610, pp. 492–97.CrossRefGoogle Scholar
  55. 55.
    B. Hu, W-W Zhang, Y.B. Peng, Y. Du, S.H. Liu, Y.L. Zhang: Thermochim. Acta., 2013, vol. 561, pp. 77–90.CrossRefGoogle Scholar
  56. 56.
    T. Lindahl, A. Pilotti, S. Westman: Acta Chem. Scand., 1968, vol. 22, pp. 748–52.CrossRefGoogle Scholar
  57. 57.
    F.J.A.D. Broeder, G.V. Tendeloo, S. Amelinckx, J. Hornstra, R.D. Ridder, J.V. Landuty, H.J.V. Daal: Phys. Stat. Sol., 1981, vol. 67, pp. 223–48.Google Scholar
  58. 58.
    G.V. Tendeloo, F.J.A.D. Broeder, S. Amelinckx, R.D. Ridder, J.V. Landuty, H.J.V. Daal: Phys. Stat. Sol., 1981, vol. 67, pp. 217–32.CrossRefGoogle Scholar
  59. 59.
    K.H.J. Buschow, J.H.N.V. Vucht: Z. Metallkd., 1965, vol. 56, pp. 9–13.Google Scholar
  60. 60.
    H. Okamoto: J. Phase Equilib., 2011, vol. 32, pp. 261–62.CrossRefGoogle Scholar
  61. 61.
    K.A. Gschneidner, F.W. Calderwood: Bulletin of Alloy Phase Diagrams. 1988, vol. 9, pp. 676–78.CrossRefGoogle Scholar
  62. 62.
    J.H.N.V. Vucht, K.H.J. Buschow: Philips Res. Repts., 1964, vol. 19, pp. 319–22.Google Scholar
  63. 63.
    E.E. Havinga, K.H.J. Buschow, H.J.V. Daal: Solid State Commun., 1973, vol. 13, pp. 621–27.CrossRefGoogle Scholar
  64. 64.
    K.H.J. Buschow: J. Less Common Met., 1965, vol. 8, pp. 209–12.CrossRefGoogle Scholar
  65. 65.
    R.L. Davis: Acta Crystallogr. A, 1987, vol. 43, pp. 1675–77.Google Scholar
  66. 66.
    K.H.J. Buschow, A.S.V.D. Goot: J. Less Common Met., 1971, vol. 24, pp. 117–20.CrossRefGoogle Scholar
  67. 67.
    I. PoP, M. Andrecut, I. Burda, V. Crisan: Mater. Lett., 1992, vol. 15, pp. 171–74.CrossRefGoogle Scholar
  68. 68.
    M. Andrecut, I. Pop, I. Burda: J. Phys. D, 1993, vol. 26, pp. 1810–13.CrossRefGoogle Scholar
  69. 69.
    V. Raghavan: J. Phase Equilib., 2005, vol. 26, pp. 180.CrossRefGoogle Scholar
  70. 70.
    V. Raghavan: J. Phase Equilib., 2009, vol. 31, pp. 44–45.CrossRefGoogle Scholar
  71. 71.
    Y.F. Pan, W.C. Yang, C.H. Tang, Y.N. Lan, Y.Z. Zhan: Phase Transit., 2015, vol. 88, pp. 1111–21.CrossRefGoogle Scholar
  72. 72.
    A. Saccone, G. Cacciamani, S.D. Negri, R.Ferro: J. Phase Equilib., 2002, vol. 23, pp. 29–37.CrossRefGoogle Scholar
  73. 73.
    V. Raghavan: J. Phase Equilib., 2010, vol. 31, pp. 453–54.CrossRefGoogle Scholar
  74. 74.
    Z.L. Yang, Y.Z. Zhan, H.L. Mo, Y. Du, H.Y. Xu: J. Alloys Compd., 2010, vol. 503, pp. 61–64.CrossRefGoogle Scholar
  75. 75.
    J. Hu, Y.Z. Zhan, M.J. Pang, C.L. Li, W.C. Yang, Y. Du: J. Phase Equilib., 2011, vol. 32, pp. 412–17.CrossRefGoogle Scholar
  76. 76.
    S.K. Pan, X. Liu, L.C. Cheng, X.K. Wang, G.H. Rao, Q.R. Yao, H.Y. Zhou: J. Alloys Compd., 2014, vol. 605, pp. 164–67.CrossRefGoogle Scholar
  77. 77.
    Y.Z. Zhan, Y. Du, Y.H. Zhuang, Determination of phase diagrams using equili-brated alloys, in: J.-C. Zhao (Ed.), Methods for Phase Diagram Determination, First ed., Elsevier Science Press, Amsterdam, The Netherlands, 2007, pp. 108–150.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.College of Resources, Environment and MaterialsGuangxi UniversityNanningP.R. China
  2. 2.Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured MaterialsGuangxi UniversityNanningP.R. China

Personalised recommendations