Advertisement

In Situ Time-Resolved Phase Evolution and Phase Transformations in U-6 Wt Pct Nb

  • Jianzhong ZhangEmail author
  • Donald W. Brown
  • Bjorn Clausen
  • Sven C. Vogel
  • Robert E. Hackenberg
Article
  • 31 Downloads

Abstract

In situ time-resolved synchrotron X-ray diffraction experiments were conducted to study the fine-scale phase evolution of U-6Nb. Upon rapid heating from 125 °C to 400 °C, a reverse martensitic transformation sequence, α″ → γo → γs, was observed in less than 4 seconds, which represents the first direct observation of the γo → γs transformation in diffraction-based measurements. Consistent with previous ex situ metallography experiments, our isothermal hold experiments at 526 °C, 530 °C and 565 °C reveal two distinct reactions for the phase separation, γs → α-U + γ1 (general precipitation) followed by (α-U + γ1) → α-U + γ1-2 (discontinuous precipitation). For the first-stage precipitation, the incubation time is determined to be ~ 50 and 100 seconds, respectively, for the isothermal aging at 526-530 °C and 565 °C. At this stage, the phase transformation is characterized by the simultaneous growth of α-U and γ1 at the expense of γs. As expected from the Arrhenius equation for the reaction rate, the determined times (~ 23 minutes) for the completion of the first-stage reaction at 526 ± 3 °C and 530 ± 3 °C are nearly twice longer than that at 565 ± 4 °C (~ 13 minutes). Over these periods of time, the Nb contents derived from a Vegard’s-type relationship for γ1 are in the 30.2 to 32.1 and 29.2 to 30.6 at. pct ranges, and the kinetics of the precipitation at 565 ± 4 °C can be described by the classic Avrami rate equation and one-dimensional growth of a surface or grain-boundary nucleation. During the second-stage precipitation, the γ1 phase continues to enrich in Nb as it gradually evolves toward the α + γ1-2 metastable state (up to 47 at. pct over a period of 172 minutes at 530 °C). These new and time-resolved measurements can be used to better constrain the time–temperature–transformation diagram, solute (Nb) redistribution, and transformation kinetics during the early stages of the diffusional phase transformation.

Notes

Acknowledgments

This work was supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). The research presented in this article was supported by the Science Campaign 4 Program. The synchrotron X-ray diffraction experiments were performed at beamline 1-ID of Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

References

  1. 1.
    [1] Lehmann J. and Hills R.F., J. Nucl. Mater., vol. 2, 261-68, 1960.CrossRefGoogle Scholar
  2. 2.
    [2] Koike J., Kassner M.E., Tate R.E., and Rosen R.S, Journal of Phase Equilibria, 19, 253-259, 1998.CrossRefGoogle Scholar
  3. 3.
    [3] Duong T.C., Hackenberg R.E., Landa A., Honarmandi P., Talapatra A., Volz H.M., Llobet A., Smith A.I., King G., Bajaj S., Ruban A., Vitos L., Turchi P.E.A., Arróyave R., Calphad, 55, 219-230, 2016.CrossRefGoogle Scholar
  4. 4.
    [4] Eckelmeyer K.H., A.D. Romig, Jr., and L.J. Weirick, Metallurgical Transactions A 15A, 1319, 1984.CrossRefGoogle Scholar
  5. 5.
    R.E. Hackenberg, D.W. Brown, A.J. Clarke, L.B. Dauelsberg, R.D. Field, W.L. Hults, A.M. Kelly, M.F. Lopez, D.F. Teter, D.J. Thoma, T.J. Tucker, C.J. Vigil, and H.M. Volz: U–Nb Aging Final Report. Los Alamos National Laboratory Report LAUR-14327, 2007.Google Scholar
  6. 6.
    R.E. Hackenberg, M.G. Emigh, A.M. Kelly, P.A. Papin, R.T. Forsyth, T.J. Tucker, and K.D. Clarke: The Surprising Occurrence of Non-steady-State Growth of Divergent Lamellar Decomposition Products in Uranium–Niobium Alloys: A Preliminary Report. Los Alamos National Laboratory Report LA-UR-12-25218, 2012.Google Scholar
  7. 7.
    [7] Brown D.W., Bourke M.A.M., Clarke A.J., Field R.D., Hackenberr R.E., Hults W.L., Thoma D.J., J. Nucl. Mats. 481, 164-175, 2016.CrossRefGoogle Scholar
  8. 8.
    [8] Manna I., Pabi S.K., and Gust W., International Materials Reviews 46, 53-91, 2001.CrossRefGoogle Scholar
  9. 9.
    R.J. Jackson: Rocky Flats Plant Report RFP-1609, 1971.Google Scholar
  10. 10.
    [10] Vandermeer R.A., Acta Metallurgica 28 383-393, 1980.CrossRefGoogle Scholar
  11. 11.
    [11] Hackenberg R.E., Volz H.M., Papin P.A., Kelly A.M., Forsyth R.T., Tucker T.J., and Clarke K.D., Solid State Phenomena 172-174, 555-560, 2011.CrossRefGoogle Scholar
  12. 12.
    [12] Volz H.M., Hackenberg R.E., Kelly A.M., Hults W.L., Lawson A.C., Field R.D., Teter D.F., Thoma D.J., Journal of Alloys and Compounds 444–445, 217–225, 2007CrossRefGoogle Scholar
  13. 13.
    [13] Clarke A.J., Field R.D., Hackenberg R.E., Thoma D.J., Brown D.W., Teter D.F., Miller M.K., Russell K.F., Edmonds D.V., Beverini G., J. Nucl. Mater., 393 282-291, 2009.CrossRefGoogle Scholar
  14. 14.
    [14] Brown D.W., Bourke M.A.M., Dunn P.S., Field R.D., Stout M.G., and Thoma D.J., Metallurgical and Materials Transactions A vol. 32A, 2219-2228, 2001.CrossRefGoogle Scholar
  15. 15.
    [15] Cady C.M., Gray III G.T., Chen S.R., Field R.D., Korzekwa D.R., Hixson R.S. and Lopez M.F., J. Phys. IV France 134 203–208, 2006.CrossRefGoogle Scholar
  16. 16.
    [16] Cady C.M., Gray III G.T., Chen S.R., Cerreta E.K., Trujillo C.P., Lopez M.F., Aikin Jr. R.M., Korzekwa D.R. and Kelly A.M., DYMAT 2009, 1045–1051, 2009.Google Scholar
  17. 17.
    [17] Tupper, C.N., Brown, D.W., Field, R.D., Sisneros T.A., and Clausen B., Metall and Mat Trans A 43, 520-530, 2012.CrossRefGoogle Scholar
  18. 18.
    R.E. Hackenberg, R.M. Aikin, A.M. Kelly, R.T. Forsyth, P.A. Papin, D.J. Alexander, T.J. Tucker, W.L. Hults, and M.F. Lopez: Microstructure and Mechanical Response of U–6Nb and U–8Nb in Gamma Quenched and Long-Term Aged Conditions. Los Alamos National Laboratory Report LA-14487, 2016.Google Scholar
  19. 19.
    P.D. Desai and C.Y. Ho: Thermal Linear Expansion of Nine Selected AISI Stainless Steels. CINDAS-RP-51, 1978Google Scholar
  20. 20.
    A.C. Larson and R.B. Von Dreele: GSAS—General Structure Analysis System. Los Alamos National Laboratory Report LAUR 86-748, 2000Google Scholar
  21. 21.
    R.J. Jackson: Rocky Flats Plant Report RFP-1535, 1970.Google Scholar
  22. 22.
    [22] Zhang J., Vogel S.C., Brown D.W., Clausen B., and Hackenberg R.E., J. Appl. Phys. 123, 175103, 2018.CrossRefGoogle Scholar
  23. 23.
    [23] Vandermeer R.A. Ogle J.C., and Snyder W.B., Scripta Metall. 12, 243-248, 1978.CrossRefGoogle Scholar
  24. 24.
    [24] Vandermeer R.A., Ogle J.C., and Northcutt W.G., Metall. Trans. A, 12A, 733-741, 1981.CrossRefGoogle Scholar
  25. 25.
    Avrami M., J. Chem. Phys. 71103-1112, 1939;CrossRefGoogle Scholar
  26. 26.
    Erofeev B.V., C. R. Acad. Sci., USSR 52 511, 1946.Google Scholar
  27. 27.
    [27] Christian J.W., The Theory of Transformations in Metals and Alloys, 1st ed. (Pergamon, Oxford, 1965).Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  • Jianzhong Zhang
    • 1
    Email author
  • Donald W. Brown
    • 1
  • Bjorn Clausen
    • 1
  • Sven C. Vogel
    • 1
  • Robert E. Hackenberg
    • 2
  1. 1.Material Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.SIGMA DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations