Advertisement

Effects of Isothermal Aging on the Microstructure Evolution and Pitting Corrosion Resistance of Lean Duplex Stainless Steel UNS S32003

  • Liang He
  • Lovelyn Wirian
  • Preet M. SinghEmail author
Article
  • 39 Downloads

Abstract

UNS S32003 materials were aged at temperatures in the range of 873 K to 1173 K (600 °C to 900 °C) for 30 minutes and 2 hours. Nitrides were found to precipitate along the ferrite/austenite phase boundaries and within the ferrite phase. The precipitation kinetics was the fastest at 1073 K (800 °C), at which temperature the Cr-depleted zones were observed to be in the vicinity of the precipitates. Precipitation and resultant Cr-depleted zone led to the highest pitting susceptibility of the UNS S32003, aged at 1073 K (800 °C), when tested in 0.6 mol/L NaCl solution. To observe the precipitation evolution, the UNS S32003 specimens were aged at 973 K (700 °C) for different time periods for up to 120 hours. Within aging time up to 24 hours at 973 K (700 °C), only nitrides precipitates were observed and an intermetallic phase was observed after 120 hours of aging along with an increase in the percentage of precipitates. Pitting potential dropped with increasing aging time and metastable pitting rate increased with longer aging time period, both indicating a negative effect of aging on pitting corrosion resistance of the lean duplex stainless steel UNS S32003.

Notes

Acknowledgments

Author (Liang He) would like to thank the Renewable Bioproducts Institute at Georgia Tech for the PSE graduate student fellowship. The authors would also like to acknowledge the member companies of the Renewable Bioproducts Institute at Georgia Institute of Technology for a partial financial support for this project.

References

  1. 1.
    A. Bhattacharya and P. M. Singh, J. Fail. Anal. Prev. 2007, vol. 7, pp. 371-377.CrossRefGoogle Scholar
  2. 2.
    V. Muthupandi, P. Srinivasan, S. K. Seshadri, S. Sundaresan, Mater. Sci. Eng. A 2003, 358, 9-16.CrossRefGoogle Scholar
  3. 3.
    R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa and H. Maza, Materials Characterization 2008, vol. 59, pp. 447-53.CrossRefGoogle Scholar
  4. 4.
    N Leif, Welding in the World 2012, 56, 65-76.CrossRefGoogle Scholar
  5. 5.
    L. Zhang, W. Zhang, Y. Jiang, B. Deng, D. Sun and J. Li, Electrochim. Acta 2009, vol. 54, pp. 5387-92.CrossRefGoogle Scholar
  6. 6.
    Y. Yang, H. Tan, Z. Zhang, Z. Wang, Y. Jiang, L. Jiang and J. Li, CORROSION 2012, vol. 69, pp. 167-73.CrossRefGoogle Scholar
  7. 7.
    L. He and P.M. Singh, In CORROSION 2017, (NACE International: New Orleans, Louisiana, USA, 2017), p 8.Google Scholar
  8. 8.
    D. C. dos Santos and R. Magnabosco, Metall. Mater. Trans. A 2016, vol. 47, pp. 1554-65.CrossRefGoogle Scholar
  9. 9.
    J. Michalska and M. Sozańska, Mater. Charact. 2006, vol. 56, pp. 355-62.CrossRefGoogle Scholar
  10. 10.
    I. Calliari, M. Pellizzari, M. Zanellato and E. Ramous, J. Mater. Sci. 2011, vol. 46, p. 6916.CrossRefGoogle Scholar
  11. 11.
    H. Sieurin, R. Sandström, Mater. Sci. Eng. A 2007, 444, 271-76.CrossRefGoogle Scholar
  12. 12.
    A. Bhattacharya and P. M. Singh, Metall. Mater. Trans. A 2009, vol. 40, pp. 1388-99.CrossRefGoogle Scholar
  13. 13.
    M. E. Wilms, V. J. Gadgil, J. M. Krougman and F. P. Ijsseling, Corros. Sci. 1994, vol. 36, pp. 871-81.CrossRefGoogle Scholar
  14. 14.
    C. J. Park, V. S. Rao and H. S. Kwon, CORROSION 2005, vol. 61, pp. 76-83.CrossRefGoogle Scholar
  15. 15.
    J.-Y. Maetz, S. Cazottes, C. Verdu and X. Kleber, Metall. Mater. Trans. A 2016, vol. 47, pp. 239-53.CrossRefGoogle Scholar
  16. 16.
    M. Naghizadeh and M. H. Moayed, Corrosion Science 2015, vol. 94, pp. 179-89.CrossRefGoogle Scholar
  17. 17.
    Z. Wei, J. Laizhu, H. Jincheng and S. Hongmei, Materials Characterization 2009, vol. 60, pp. 50-55.CrossRefGoogle Scholar
  18. 18.
    Z. Zhang, H. Zhao, H. Zhang, Z. Yu, J. Hu, L. He and J. Li, Corros. Sci. 2015, vol. 93, pp. 120-25.CrossRefGoogle Scholar
  19. 19.
    L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu and J. Li, Materials Characterization 2009, vol. 60, pp. 1522-28.CrossRefGoogle Scholar
  20. 20.
    K. Ravindranath and S. N. Malhotra, Corros. Sci. 1995, vol. 37, pp. 121-32.CrossRefGoogle Scholar
  21. 21.
    B. Deng, Z. Wang, Y. Jiang, T. Sun, J. Xu and J. Li, Corrosion Science 2009, vol. 51, pp. 2969-75.CrossRefGoogle Scholar
  22. 22.
    B. Deng, Z. Wang, Y. Jiang, H. Wang, J. Gao and J. Li, Electrochim. Acta 2009, vol. 54, pp. 2790-94.CrossRefGoogle Scholar
  23. 23.
    A. Bhattacharya and P. M. Singh, CORROSION 2008, vol. 64, pp. 532-40.CrossRefGoogle Scholar
  24. 24.
    L. Pezzato, M. Lago, K. Brunelli, M. Breda and I. Calliari, J. Mater. Eng. Perform. 2018, vol. 27, pp. 3859-68.CrossRefGoogle Scholar
  25. 25.
    I. Calliari, M. Dabalà, E. Ramous and G. Straffelini, Mater. Sci. Forum 2009, vol. 604-605, pp. 419-26.Google Scholar
  26. 26.
    T. H. Chen, K. L. Weng and J. R. Yang, Mater. Sci. Eng. A 2002, 338, 259-70.CrossRefGoogle Scholar
  27. 27.
    E. A. Melo and R. Magnabosco, Metall. Mater. Trans. A 2017, vol. 48, pp. 5273-84.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations