A Methodology to Evaluate Continuum-Scale Yield Surfaces Based on the Spatial Distributions of Yielding at the Crystal Scale

  • Andrew C. Poshadel
  • Paul R. DawsonEmail author


Using a correlation between local yielding and a multiaxial strength-to-stiffness parameter, the continuum-scale yield surface for a polyphase, polycrystalline solid is predicted. The predicted surface explicitly accounts for microstructure through the quantification of strength-to-stiffness based on a finite element model of a crystal-scale sample. The multiaxial strength-to-stiffness is evaluated from the elastic response of the sample and the restricted slip, single crystal yield surface. Macroscopic yielding is defined by the propagation of a yield band through the sample and is detected with the aid of a flood-fill algorithm. The methodology is demonstrated with the evaluation of a plane-stress yield surface for a dual-phase super-austenitic stainless steel.



Support was provided by the US Office of Naval Research (ONR) under contract N00014-09-1-0447.


  1. 1.
    A. C. Poshadel, P. R. Dawson, Metallurgical and Materials Transactions A, (2018), Google Scholar
  2. 2.
    A. C. Poshadel, M. Gharghouri, P. R. Dawson, Metall. Mater. Trans. A, (2018), Google Scholar
  3. 3.
    P.R. Dawson, S.R. MacEwen, P. D. Wu, Int. Mater. Rev., 48, 86–122. (2003)CrossRefGoogle Scholar
  4. 4.
    P.R. Dawson and D.E. Boyce: FEpX—Finite Element Polycrystals: Theory, Finite Element Formulation, Numerical Implementation and Illustrative Examples, 2015. arXiv:1504.03296 [cond-mat.mtrl-sci]
  5. 5.
    W.A. Backofen: Deformation Processing, Addison-Wesley Publishing Company, Reading, 1972.Google Scholar
  6. 6.
    U. F. Kocks, C. N. Tome, H.-R. Wenk, Texture and Anisotropy, Cambridge University Press, (1998)Google Scholar
  7. 7.
    H. Tresca, Comptes Rendus Acad. Sci. Paris, 59, 754–758 (1864)Google Scholar
  8. 8.
    M. T. Huber, , Lwow, 22, 38–81. (1904)Google Scholar
  9. 9.
    R. von Mises: Gottinger Nachrichten Math.-Phys. Klasse 4, pp. 582–592. (1913)Google Scholar
  10. 10.
    H. Hencky, Zeits. ang. Math. Mech., 4, p. 323. (1924)CrossRefGoogle Scholar
  11. 11.
    M. Gurtin, An Introduction to Continuum Mechanics, Academic Press, New York, (1981)Google Scholar
  12. 12.
    R. Hill, Proc. R. Soc., A193, 281–297. (1948)Google Scholar
  13. 13.
    R. Hill, J. Mech. Phys. Solids, 38, 405–417. (1990)CrossRefGoogle Scholar
  14. 14.
    F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J. C. Brem, Y. Hayashida, D. J. Lege, K. Matsui, S. J. Murtha, S. Hattori, R. C. Becker, S. Makosey, J. Mech. Phys. Solids, 45, 1727–1763. (1997)CrossRefGoogle Scholar
  15. 15.
    W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals. Oxford Science Publications, Oxford (1993)Google Scholar
  16. 16.
    P.J. Maudlin, S.I. Wright, I.G.T. Gray, and J.W. House: in Metallurgic and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Elsevier Science B. V., 1995, pp. 877–884.Google Scholar
  17. 17.
    P. R. Dawson, D. E. Boyce, R. Hale, J. P. Durkot, Int. J. Plasticity, 21, 251–283. (2005)CrossRefGoogle Scholar
  18. 18.
    S. Torbert, Applied Computer Science, , , 2d ed., (2016)Google Scholar
  19. 19.
    A. C. Poshadel, M. Gharghouri, P. R. Dawson, Metallurgical and Materials Transactions A, (2018), 10.1007/s11661-018-5085-2Google Scholar
  20. 20.
    D. W. A. Rees, Basic engineering plasticity : an introduction with engineering and manufacturing applications, Elsevier, Boston, MA, (2006)Google Scholar
  21. 21.
    K. Chatterjee, M. P. Echlin, M. Kasemer, P. G. Callahan, T. M. Pollock, P. Dawson, Acta Materialia, vol. 157, pp. 21–32. (2018)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations