Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2413–2434 | Cite as

Application of −140 °C Sub-Zero Treatment For Cr-V Ledeburitic Steel Service Performance Improvement

  • Peter Jurči
  • Juraj Ďurica
  • Ivo DlouhýEmail author
  • Jakub Horník
  • Richard Planieta
  • Dominik Kralovič
Article
  • 52 Downloads

Abstract

The effect of −140 °C, 17-hour sub-zero treatment and subsequent tempering on the hardness, flexural strength, and fracture toughness of Cr-V ledeburitic steel was investigated. The main purpose was to highlight the role of microstructural alterations, such as a decrease of the retained austenite content, the quantitative parameters of carbide distributions, or others, due to applied treatments. Compared to conventional treatments, the applied sub-zero treatment improves the hardness of the material significantly within the whole range of tempering temperatures used. The hardness enhancement is in the range from 197 to 137 HV10 for tempering at 170 °C to 450 °C. The flexural strength is slightly improved at low tempering conditions up to 170 °C, while there is almost no effect of the sub-zero treatment on flexural strength for higher tempering temperatures. The fracture toughness is substantially improved (by about 3 MPa m1/2) in the untempered state as well as after high-temperature tempering. The fracture toughness is slightly worsened, by about 0.15 to 1 MPa m1/2, within the 170 °C to 450 °C range of tempering temperatures. These changes in fracture toughness are reached with a significant increase of hardness. This steel performance is associated with enhanced fracture surface roughness and an increased ductile microvoid coalescence micromechanism presence in fracture surfaces. The results also show that treatment at −140 °C leads to a greater enhancement of the complex of mechanical properties than can be obtained by soaking the samples in liquid nitrogen.

Notes

Acknowledgments

The authors acknowledge that the paper is a result of experiments performed within project VEGA 1/0264/17. In addition, this publication is the result of the project implementation “Centre for Development and Application of Advanced Diagnostic Methods in Processing of Metallic and Non-Metallic Materials—APRODIMET,” ITMS: 26220120014, supported by the Research & Development Operational Programme funded by the ERDF.

References

  1. 1.
    C.H. Surberg, P. Stratton and K. Lingenhoele: Cryogenics, 2008, vol. 48, pp. 42 – 47.CrossRefGoogle Scholar
  2. 2.
    D. Das, A.K. Dutta and K.K. Ray: Phil. Mag. Lett., 2008, vol. 88 (11), pp. 801 – 811.CrossRefGoogle Scholar
  3. 3.
    W. Reitz and J. Pendray: Mater. Manuf. Proc., 2001, vol. 16, pp. 829 – 840.CrossRefGoogle Scholar
  4. 4.
    D. Das, A.K. Dutta and K.K. Ray: Mat. Sci. Eng. A, 2010, vol. A527, pp. 2194 – 2206.CrossRefGoogle Scholar
  5. 5.
    D. Das and K.K. Ray: Mater. Sci. Eng. A, 2012, vol. A541, pp. 45 – 60.CrossRefGoogle Scholar
  6. 6.
    D. Das, A.K. Dutta and K.K. Ray: Mater. Sci. Eng. A, 2010, vol. A527, pp. 2182 – 2193.CrossRefGoogle Scholar
  7. 7.
    D. Das, A.K. Dutta and K.K. Ray: Cryogenics, 2009, vol. 49, pp. 176 – 184.CrossRefGoogle Scholar
  8. 8.
    D. Das, R. Sarkar, A.K. Dutta and K.K. Ray: Mater. Sci. Eng. A, 2010, vol. A528, pp. 589 – 603.CrossRefGoogle Scholar
  9. 9.
    J. Sobotová, P. Jurči, and I. Dlouhý: Mater. Sci. Eng. A, 2016, vol. A652, pp. 192–204.CrossRefGoogle Scholar
  10. 10.
    J. Ptačinová, V. Sedlická, M. Hudáková, I. Dlouhý and P. Jurči: Mater. Sci. Eng. A 2017, vol. 702, pp. 241 – 58.CrossRefGoogle Scholar
  11. 11.
    V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Yu.N. Petrov and Y.V. Tarusin: Acta Mater., 2013, vol. 61, pp. 1705 – 15.CrossRefGoogle Scholar
  12. 12.
    P.F. Stratton: Mater. Sci. Eng. A, 2007, vol. A449-451, pp. 809 – 12.CrossRefGoogle Scholar
  13. 13.
    M. Nemec, P. Jurči, P. Kosnáčová and M. Kučerová: Kovove Mater., 2016, vol. 54, pp. 453 – 462.Google Scholar
  14. 14.
    ASTM E112-10: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2010, www.astm.org,  https://doi.org/10.1520/e0112-10.
  15. 15.
    P. Jurči, M. Dománková, L. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič and D. Jenko: Vacuum, 2015, vol. 111, pp. 92 – 101.CrossRefGoogle Scholar
  16. 16.
    M. Martinkovič: Quantitative Structural Analysis of Materials, 1st ed., STU Bratislava, Slovakia, 2011 (in Czech).Google Scholar
  17. 17.
    ASTM E975-13: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM Book of Standards, vol. 3.01, West Conshohocken, PA, USA, 2004.Google Scholar
  18. 18.
    ISO 12137: 2010. Metallic materials—determination of plane strain fracture toughness.Google Scholar
  19. 19.
    P. Jurči, M. Dománková, M. Hudáková, J. Ptačinová, M. Pašák and P. Palček: Mater. Charact., 2017, vol. 134, pp. 398 – 415.CrossRefGoogle Scholar
  20. 20.
    P. Jurči: HTM J. Heat Treat. Mater., 2017, vol. 72, pp. 62 – 68.CrossRefGoogle Scholar
  21. 21.
    K. Amini, A. Akhbarizadeh and S. Javadpour: Vacuum, 2012, vol. 86, pp. 1534 – 1540.CrossRefGoogle Scholar
  22. 22.
    P. Bílek, J. Sobotová and P. Jurči: Mater. Tehnol., 2011, vol. 45, pp. 489 – 493.Google Scholar
  23. 23.
    J. Ďurica, J. Ptačinová, M. Hudáková, M. Kusý, and P. Jurči: Adv. Mater. Sci. Eng., 2018, Article Number: 6537509.Google Scholar
  24. 24.
    H. Fredriksson, M. Hillert and M. Nica: Scand. J. Metall., 1979, vol. 8, pp. 115 – 122.Google Scholar
  25. 25.
    S. Morito, J. Nishikawa and T. Maki: ISIJ Int., 2003, vol. 43, pp. 1475 – 1477.CrossRefGoogle Scholar
  26. 26.
    M. Villa, K. Pantleon and M.A.J. Somers: Acta Mater., 2014, vol. 65, pp. 383 – 392.CrossRefGoogle Scholar
  27. 27.
    P. Jurči, J. Ptačinová, M. Sahul, M. Dománková, and I. Dlouhy: Matér. Tech., 2018, vol. 106, Article Number 104.Google Scholar
  28. 28.
    A. Kulmburg, E. Putzgruber, F. Korntheurer, and E. Kaiser: HTM J. Heat Treat. Mater., 1992, vol. 1992, pp. 318–23 (In German).Google Scholar
  29. 29.
    F. Meng, K. Tagashira, R. Azuma and H. Sohma: ISIJ Int., 1994, vol. 34, pp. 205 - 10.CrossRefGoogle Scholar
  30. 30.
    S. Li, N. Min, J. Li, X. Wu, Ch. Li and L. Tang: Mater. Sci. Eng. A, 2013, vol. A575, pp. 51 – 60.Google Scholar
  31. 31.
    L. Cheng, C.M. Brakman, B.M. Korevaar and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19A, pp. 2415 – 2426.CrossRefGoogle Scholar
  32. 32.
    S.K. Putatunda: Mater. Sci. Eng., 2001, vol. A297, pp. 31 – 43.CrossRefGoogle Scholar
  33. 33.
    N. Hansen: Scr. Mater., 2004, vol. 51, pp. 801 – 806.CrossRefGoogle Scholar
  34. 34.
    D. Casellas, J. Caro, S. Molas, J.M. Prado and I. Valls: Acta Mater., 2007, vol. 55, pp. 4277 – 4286.CrossRefGoogle Scholar
  35. 35.
    K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsuji and K. Ono: Metall. Mater. Trans., 2004, vol. 35A, 1289 – 1300.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Peter Jurči
    • 1
  • Juraj Ďurica
    • 1
  • Ivo Dlouhý
    • 2
    • 3
    Email author
  • Jakub Horník
    • 4
  • Richard Planieta
    • 1
  • Dominik Kralovič
    • 1
  1. 1.Institute of Materials ScienceFaculty of Materials Science and Technology in TrnavaTrnavaSlovakia
  2. 2.Institute of Physics of Materials, CEITEC-IPMCzech Academy of SciencesBrnoCzech Republic
  3. 3.Institute of Materials Science and EngineeringBrno University of TechnologyBrnoCzech Republic
  4. 4.Faculty of Mechanical EngineeringCzech Technical UniversityPrague 2Czech Republic

Personalised recommendations