Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2279–2288 | Cite as

Influence of Ir Additions and Icosahedral Short Range Order (ISRO) on Nucleation and Growth Kinetics in Au-20.5Wt Pct Cu-4.5Wt PctAg Alloy

  • J. ZollingerEmail author
  • B. Rouat
  • J. Guyon
  • S. K. Pillai
  • M. Rappaz
Article

Abstract

Based on detailed EBSD analyses, Kurtuldu et al. (Acta Mater. 70:240–248, 2014) have explained the grain refinement of Au-12.5 wt pctCu-12.5 wt pctAg (yellow gold) by the addition of minute amounts of Ir in terms of “icosahedral quasicrystal (iQC)-mediated nucleation”, i.e., Ir induced the formation of Icosahedral short range order (ISRO) of atoms in the liquid, leading to the formation of iQC on which the fcc-phase forms. In the present contribution, we show that: (i) this mechanism is also responsible of the grain refinement in Au-20.5 wt pctCu-4.5 wt pctAg (pink gold) with Ir addition; (ii) ISRO also influences the morphology and growth kinetics of the fcc phase: at solidification rate of a few mm/s, \(\langle 100\rangle \) dendrites are replaced by a cellular-type morphology growing along \(\langle 111\rangle \) when 100 wt ppm of Ir is added to the melt; (iii) iQC-mediated nucleation is accompanied by a spinodal decomposition of the liquid, which is revealed at high cooling rate by the formation of Cu-rich particles or dendrites, some of them being also twinned, in parallel to iQC-mediated grain refinement and twin formation.

Notes

Acknowledgments

The authors would like to thank Dr. S. Prades-Rödel and Dr. A. Blatter at PX Group for providing the gold alloys. J.Z. would like to thank E. Etienne for sample preparation. Y. Amal, E. Delon, D. Lacueva Oyarzabala and A. Masson are also acknowledged for their help with heat treatments and associated characterisations.

References

  1. 1.
    G. Kurtuldu, A. Sicco, and M. Rappaz: Acta Mater., 2014, vol. 70, pp. 240–48.CrossRefGoogle Scholar
  2. 2.
    G. Kurtuldu, P. Jarry, and M. Rappaz: Acta Mater., 2013, vol. 61(19), pp. 7098–108.CrossRefGoogle Scholar
  3. 3.
    M. Rappaz and G. Kurtuldu: JOM, 2015, vol. 67(8), pp. 1812–20.CrossRefGoogle Scholar
  4. 4.
    M. Rappaz and G. Kurtuldu: J.P.E.D., 2016, vol. 37(1, SI), pp. 2–3.Google Scholar
  5. 5.
    N. Nakayama, K. Tanaka, S. Matsukawa, K. Deguchi, K. Imura, T. Ishimasa, and N.K. Sato: J. Phys. Soc. Jpn., 2015, vol. 84, art. id 024721.Google Scholar
  6. 6.
    S. Matsukawa, K. Tanaka, N. Nakayama, K. Deguchi, K. Imura, H. Takakura, S. Kashimoto, T. Ishimasa, and N.K. Sato: J. Phys. Soc. Jpn., 2014, vol. 83, art. id 034705.Google Scholar
  7. 7.
    Q. Lin and J.D. Corbett: J. Am. Chem. Soc., 2007, vol. 129, pp. 6789–97.CrossRefGoogle Scholar
  8. 8.
    I. Karakaya and W.T. Thompson: Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, 1990, vol. 1, pp. 49–50.Google Scholar
  9. 9.
    Au-Ir binary phase diagram. http://ipandat.computherm.com/Diagram/Details/7556, 2017. Accessed 12 September 2017.
  10. 10.
    E. Raub and E. Roeschel: Z. Metallkd., 1969, vol. 60, pp. 142–44.Google Scholar
  11. 11.
    C.J. Essig: Manual for the Use of Dental Students, The S. S. White Dental Manufacturing Co., 1893.Google Scholar
  12. 12.
    J.P. Nielsen and J.J. Tuccillo: J. Dent. Res., 1966, vol. 45(3), pp. 964–69.CrossRefGoogle Scholar
  13. 13.
    D. Ott and C.J. Raub: Gold Bull., 1981, vol. 14(2), pp. 69–74.CrossRefGoogle Scholar
  14. 14.
    G. Kurtuldu, P. Jarry, and M. Rappaz. Acta Mater., 2016, vol. 115, pp. 423–433.CrossRefGoogle Scholar
  15. 15.
    W. Hornfeck, R. Kobold, M. Kolbe, M. Conrad and D. Herlach: Nat. Commun., 2018, vol. 9, art. id 4054.Google Scholar
  16. 16.
    S. Wang, D. Daloz, F. Bruneseaux, and G. Lesoult: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, art. id 012064.Google Scholar
  17. 17.
    S. Wang: PhD thesis, Université de Lorraine, 2012.Google Scholar
  18. 18.
    G. Jeanmaire, M. Dehmas, A. Redjaiemia, S. Puech, and G. Fribourg: Mater. Char., 2014, vol. 98, pp. 193–201.CrossRefGoogle Scholar
  19. 19.
    J.O. Andersson, T. Helander, L.H. Hoglund, P.F. Shi, and B. Sundman: Calphad, 2002, vol.26(2), pp. 273–312.CrossRefGoogle Scholar
  20. 20.
    B Sundman, S.G. Fries, and W.A. Oates: Calphad, 1998, vol. 22(3), pp. 335–54.CrossRefGoogle Scholar
  21. 21.
    S. Hassam, J. Ågren, M. Gaune-Escard, and J.P. Bros. Metal. Trans. A, 1990, vol. 21, pp. 1877–84.CrossRefGoogle Scholar
  22. 22.
    A. Kusoffsky: Acta Mater., 2002, vol. 50(20), pp. 5139–45.CrossRefGoogle Scholar
  23. 23.
    A.T. : 1991, vol. 15(4), pp. 317–425, 1991.CrossRefGoogle Scholar
  24. 24.
    J.K. Mackenzie: Biometrika, 1958, vol. 45, pp. 229–40.CrossRefGoogle Scholar
  25. 25.
    J.D. : 1984, vol. 65, pp. 75–83, 1984.CrossRefGoogle Scholar
  26. 26.
    J.A. Dantzig and M. Rappaz: Solidification, 2nd ed., EPFL-Press, Lausanne, Switzerland, 2016.Google Scholar
  27. 27.
    L. Gránásy, T. Pusztai, J.A. Warren, J.F. Douglas, T. Börzsönyi, and V. Ferreiro: Nature Mater., 2003, vol. 2, pp. 92–96.CrossRefGoogle Scholar
  28. 28.
    S. Henry, T. Minghetti, and M. Rappaz: Acta Mater., 1998, vol. 46, pp.6431–43.CrossRefGoogle Scholar
  29. 29.
    G. Kurtuldu: PhD thesis, EPFL, Lausanne, 2014.Google Scholar
  30. 30.
    M. Bedel, G. Reinhart, A.-A. Bogno, C.-A. Gandin, S. Jacomet, E. Boller, H. Nguyen-Thi, and H. Henein: Acta Mater., 2015, vol. 89, pp. 234–246.CrossRefGoogle Scholar
  31. 31.
    J. Ding, M. Asta, and J.J. Hoyt: Frontiers in solidification, TMS Conference, Nashville, USA, 2016. Collection of extended abstracts, Eds W. Kurz et al, wilfried.kurz@epfl.ch.Google Scholar
  32. 32.
    M. Lima and W. Kurz: . Metall. Mater. Trans. A, 2002, vol. 33A(8), pp. 2337–45.CrossRefGoogle Scholar
  33. 33.
    I.L. Shabalin: Ultra-High Temperature Materials I, Springer, New York, 2014, pp. 609–49.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • J. Zollinger
    • 1
    Email author
  • B. Rouat
    • 1
  • J. Guyon
    • 2
  • S. K. Pillai
    • 1
  • M. Rappaz
    • 3
  1. 1.Institut Jean LamourUniversité de LorraineNancyFrance
  2. 2.Laboratoire d’Etude des Microstructures et de Mécanique des MatériauxUniversité de LorraineMetzFrance
  3. 3.Institute of Materials, École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations