Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2391–2398 | Cite as

A Novel Approach to Structure Modification of Brasses by Combination of Non-equilibrium Heat Treatment and Friction Stir Processing

  • Akbar HeidarzadehEmail author
  • Ali Chabok
  • Volker Klemm
  • Yutao Pei


A non-equilibrium heat treatment was used to produce secondary phase (β) in the single phase brass (α), which caused the modification of the grain structure and mechanical properties after friction stir processing. For this aim, the single phase brass plate containing 37 wt pct Zn was heated at 810 °C for 1 hour, and then quenched in water, which caused the formation of non-equilibrium secondary β phase. After the non-equilibrium heat treatment, bead on plate friction stir processing was employed. The origin of the modification by β phase was studied using high resolution electron backscattered diffraction and transmission electron microscopy. The results showed that the average grain size, yield strength, and strain-hardening exponent were changed, respectively, from 4.8 µm, 166 MPa and 0.28 to 2.1 µm, 213 MPa and 0.25 in the presence of β phase. The β phase promoted the discontinuous dynamic recrystallization by particle-stimulated nucleation mechanism, and then transformed to α resulting in a finer microstructure with more random texture. In addition, the nanometer-sized β particles were retained at the grain boundaries, which reduced their mobility and hence the grain growth was inhibited.



  1. 1.
    A. Heidarzadeh, H. Pouraliakbar, S. Mahdavi, M.R. Jandaghi: Ceram. Int., 2018, vol. 44, pp. 3128-33.CrossRefGoogle Scholar
  2. 2.
    M. Akbari, M.H. Shojaeefard, P. Asadi, A. Khalkhali: J. Mat. Eng. Perf., 2017, vol. 26, pp. 4297-4310.CrossRefGoogle Scholar
  3. 3.
    M.H. Shojaeefard, M. Akbari, P. Asadi, A. Khalkhali: Int. J. Adv. Manuf. Technol., 2017, vol. 91, pp. 1391-1407.CrossRefGoogle Scholar
  4. 4.
    N. Xu, Q. Song, Y. Bao: Mater. Sci. Eng. A., 2018, vol. 726, pp. 169-78.CrossRefGoogle Scholar
  5. 5.
    A. Heidarzadeh, T. Saeid, V. Klemm, A. Chabok, Y. Pei: Mater. Des., 2019, vol. 162, pp. 185-97.CrossRefGoogle Scholar
  6. 6.
    A. Heidarzadeh: Arch. Civ. Mech. Eng., 2019, vol. 19, pp. 137-46.CrossRefGoogle Scholar
  7. 7.
    A. Heidarzadeh, P. Motalleb-nejad, R.V. Barenji, V. Khalili, G. Güleryüz: Mater. Chem. Phys., 2019, vol. 223, pp. 9-15.CrossRefGoogle Scholar
  8. 8.
    A. Heidarzadeh, R.V. Barenji, V. Khalili, G. Güleryüz: Vacuum, 2019, vol. 159, pp. 152-60.CrossRefGoogle Scholar
  9. 9.
    Y. Sun, N. Xu, H. Fujii: Mater. Sci. Eng. A., 2014, vol. 589, pp. 228-34.CrossRefGoogle Scholar
  10. 10.
    G. Çam, H. Serindağ, A. Çakan, S. Mistikoglu, H. Yavuz: Mater. Sci. Eng. Tech., 2008, vol. 39, pp. 394-99.Google Scholar
  11. 11.
    S. Mironov, K. Inagaki, Y.S. Sato, H. Kokawa: Philos. Mag., 2014, vol. 94, pp. 3137-48.CrossRefGoogle Scholar
  12. 12.
    X. Liu, Y. Sun, T. Nagira, K. Ushioda, H. Fujii: J. Mater. Sci., 2018, vol. 53, pp. 10423-41.CrossRefGoogle Scholar
  13. 13.
    Y.-F. Wang, J. An, K. Yin, M.-S. Wang, Y.-S. Li, C.-X. Huang: Acta Metall. Sin., 2018, vol. 31, pp. 878-86.CrossRefGoogle Scholar
  14. 14.
    N. Xu, R. Ueji, H. Fujii: Mater. Sci. Eng. A., 2014, vol. 610, pp. 132-8.CrossRefGoogle Scholar
  15. 15.
    R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R., 2005, vol. 50, pp. 1-78.CrossRefGoogle Scholar
  16. 16.
    M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, S. Suresh: Acta Mater., 2001, vol. 49, pp. 3899-3918.CrossRefGoogle Scholar
  17. 17.
    S. Suwas, N.P. Gurao: J. Indian. I. Sci., 2008, vol. 88, pp. 151-77.Google Scholar
  18. 18.
    S. Mironov, Y.S. Sato, H. Kokawa, H. Inoue, S. Tsuge: Acta Mater., 2011, vol. 59, pp. 5472-81.CrossRefGoogle Scholar
  19. 19.
    R.W. Fonda, K.E. Knipling, D.J. Rowenhorst: JOM., 2014, vol. 66, pp. 149-55.CrossRefGoogle Scholar
  20. 20.
    Y.C. Lin, X.-Y. Wu, X.-M. Chen, J. Chen, D.-X. Wen, J.-L. Zhang, L.-T. Li: J. Alloy. Compd., 2015, vol. 640, pp. 101-13.CrossRefGoogle Scholar
  21. 21.
    C.G. Rhodes, M.W. Mahoney, W.H. Bingel, M. Calabrese: Scripta Mater., 2003, vol. 48, pp. 1451-55.CrossRefGoogle Scholar
  22. 22.
    T.R. McNelley, S. Swaminathan, J.Q. Su: Scripta Mater., 2008, vol. 58, pp. 349-54.CrossRefGoogle Scholar
  23. 23.
    S. Mironov, K. Inagaki, Y.S. Sato, H. Kokawa: Philos. Mag., 2015, vol. 95, pp. 367-81.CrossRefGoogle Scholar
  24. 24.
    F.J. Humphreys, M. Hatherly, Chapter 13 - Hot Deformation and Dynamic Restoration, in: F.J.H. Hatherly (Ed.) Recrystallization and Related Annealing Phenomena (Second Edition), Elsevier, Oxford, 2004, pp. 415-34.CrossRefGoogle Scholar
  25. 25.
    A.P. Miodownik, Alloy Phase Diagrams, ASM International, Materials Park, 1992.Google Scholar
  26. 26.
    G. Kurdjumow, G. Sachs: Z. Physik., 1930, vol. 64, pp. 325-43.CrossRefGoogle Scholar
  27. 27.
    S.Y. Lee, Y.B. Chun, J.W. Han, S.K. Hwang: Mater. Sci. Eng. A., 2003, vol. 363, pp. 307-15.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Akbar Heidarzadeh
    • 1
    Email author
  • Ali Chabok
    • 2
  • Volker Klemm
    • 3
  • Yutao Pei
    • 2
  1. 1.Department of Materials EngineeringAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Department of Advanced Production Engineering, Engineering and Technology Institute Groningen, Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
  3. 3.Institute of Materials ScienceTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations