Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2381–2390 | Cite as

Densification, Microstructure, and Tribomechanical Performance of SPS-Processed 27R-SiAlON Polytype-Reinforced AlN: A Comparison Between Continuous and Pulsed Direct Current Mode

  • Mita Biswas
  • Soumya Sarkar
  • Siddhartha BandyopadhyayEmail author


The effects of current conduction modes of spark plasma sintering (SPS) (within the temperature range of 1800 °C to 2000 °C) on densification, microstructure, and tribomechanical properties of indigenously processed, additive-free AlN reinforced with 27R-SiAlON polytype (prepared by carbothermal-reduction-nitridation technique) have been reported. Sintering curves and density data of sintered specimens under pulsed direct current mode (PM) show improved densification over continuous direct current mode. The reason for enhanced density under PM may be due to the enhanced electrical discharge within the capacitor banks formed on the insulating surface of SiAlON particles. Low-temperature sintered specimen principally contained equiaxed grains, while higher sintering temperature promoted elongation in grains. The denser composite (maximum being sintered at 2000 °C) offered much improved Vickers hardness and indentation fracture toughness in comparison to those for less dense specimens. Composites sintered under PM show the existence of elongated 27R-SiAlON grains. These elongated grains facilitate enhanced energy dissipation through crack bridging and deflection, which are the key factors behind obtaining the higher toughness of the dense composite. Unlubricated linear scratch experiments also indicated better wear resistance of the higher temperature sintered specimen. The present study establishes the suitability of using PM during SPS processing of AlN composite reinforced with 27R-SiAlON polytype that offers satisfactory tribomechanical performance.



One of the authors (MB) expresses sincere thanks to CSIR, India for the Research Associate position (RA-I). The work was performed with financial support from the CSIR-Fast Track Translational Project fund (MLP-0202). Assistance rendered by the institutional characterization units is thankfully acknowledged. Thanks are due to the director of the CSIR-Central Glass & Ceramic Research Institute (Kolkata, India) for his interest.


  1. 1.
    F. Li, Q. Liang, Z. Jingwu, Y. Yao, L. Wangchang, C. Shenglei, and Y. Jing: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 1170–78.CrossRefGoogle Scholar
  2. 2.
    Q. Wang, W. Cao, J. Kuang, and P. Jiang: Ceram. Int., 2018, vol. 44, pp. 4829–34.CrossRefGoogle Scholar
  3. 3.
    M. Qin, X. Du, Z. Li, I.S. Humail, and X. Qu: Mater. Res. Bull., 2008, vol. 43, pp. 2954–60.CrossRefGoogle Scholar
  4. 4.
    T. Ide, K. Komeya, T. Meguro, and J. Tatami: J. Am. Ceram. Soc., 1999, vol. 82, pp. 2993–98.CrossRefGoogle Scholar
  5. 5.
    C. Liu, W.M. Guo, S.K. Sun, J. Zou, S.H. Wu, and H.T. Lin: J. Am. Ceram. Soc., 2017, vol. 100, pp. 3380–84.CrossRefGoogle Scholar
  6. 6.
    C. Yun, Y. Feng, T. Qiu, J. Yang, X. Li, and L. Yu: Ceram. Int., 2015, vol. 41, pp. 8643–49.CrossRefGoogle Scholar
  7. 7.
    Z. Shi, S. Chen, J. Wang, G. Qiao, and Z. Jin: J. Eur. Ceram. Soc., 2011, vol. 31, pp. 2137–43.CrossRefGoogle Scholar
  8. 8.
    X.-Y. Zhang, S.-H. Tan, and D.-L. Jiang: Ceram. Int., 2005, vol. 31, pp. 267–70.CrossRefGoogle Scholar
  9. 9.
    W. Kim, J.-W. Lim, H.-S. Oh, and I.-J. Shon: Ceram. Int., 2014, vol. 40, pp. 2511–17.CrossRefGoogle Scholar
  10. 10.
    H.-J. Kim, H.-J. Choi, and J.-G. Lee: J. Am. Ceram. Soc., 2002, vol. 85, pp. 1022–24.CrossRefGoogle Scholar
  11. 11.
    L.A.F. Júnior, Í.V. Tomaz, M.P. Oliveira, L. Simão, and S.N. Monteiro: Ceram. Int., 2016, vol. 42, pp. 18718–18723.CrossRefGoogle Scholar
  12. 12.
    L.A.F. Peçanha, S.N. Monteiro, I. Tomaz, M.M. Oliveira, A.M. Ramalho, N.T. Simonassi, and F. Braga: J. Mater. Res. Technol., 2018, vol. 7, pp. 550–53.CrossRefGoogle Scholar
  13. 13.
    K.H. Jack: J. Mater. Sci., 1976, vol. 11, pp. 1135–58.CrossRefGoogle Scholar
  14. 14.
    T. Ekstrom and M. Nygren: J. Am. Ceram. Soc., 1992, vol. 75, pp. 259–76.CrossRefGoogle Scholar
  15. 15.
    G.Z. Cao and R. Metselaar: Chem. Mater., 1991, vol. 3, pp. 242–52.CrossRefGoogle Scholar
  16. 16.
    G. Petzow and M. Jansen, eds., High Performance Non Oxide II. Springer, New York, 2002, pp. 47–167.Google Scholar
  17. 17.
    P.L. Wang, W.Y. Sun, and D.S. Yan: Mater. Lett., 1999, vol. 41, pp. 78–82.CrossRefGoogle Scholar
  18. 18.
    P.L. Wang, W.Y. Sun, and D.S. Yan: Mater. Sci. Eng. A, 1999, vol. 272, pp. 351–56.CrossRefGoogle Scholar
  19. 19.
    P.L. Wang, W.Y. Sun, and D.S. Yan: J. Eur. Ceram. Soc., 2000, vol. 20, pp. 23–27.CrossRefGoogle Scholar
  20. 20.
    H.X. Li, W.Y. Sun, and D.S. Yan: J. Eur. Ceram. Soc., 1995, vol. 15, pp. 697–701.CrossRefGoogle Scholar
  21. 21.
    S. Bandyopadhyay: J. Eur. Ceram. Soc., 1997, vol. 17, pp. 929–34.CrossRefGoogle Scholar
  22. 22.
    P.M. Johnson and A. Hendry: J. Mater. Sci., 1979, vol.14, pp. 2439–45.CrossRefGoogle Scholar
  23. 23.
    K. Komeya and A. Tsuge: Yogyo-Kyokai-Shi, 1981, vol. 89, pp. 615–20.CrossRefGoogle Scholar
  24. 24.
    K. Niihara, R. Morena, and D.P.H. Hasselman: J. Mater. Sci. Lett., 1982, vol. 1, pp. 13−16.CrossRefGoogle Scholar
  25. 25.
    K. Niihara: J. Mater. Sci. Lett., 1983, vol. 2, pp. 221–23.CrossRefGoogle Scholar
  26. 26.
    A.K. Mukhopadhyay, D. Chakraborty, M.V. Swain, and Y.W. Mai: J. Eur. Ceram. Soc., 1997, vol. 17, pp. 91–100.CrossRefGoogle Scholar
  27. 27.
    L. Melk, J.J.R. Rovira, M.L. Antti, and M. Anglada: Ceram. Int., 2015, vol. 41, pp. 459–68.CrossRefGoogle Scholar
  28. 28.
    S.H. Kim and S.W. Lee: Ceram. Int., 2014, vol. 40, pp. 779–90.CrossRefGoogle Scholar
  29. 29.
    T. Mizuguchi, S. Guo, and Y. Kagawa: Ceram. Int., 2010, vol. 36, pp. 943–46.CrossRefGoogle Scholar
  30. 30.
    S. Bandyopadhyay, M.J. Hoffmann, and G. Petzow: J. Am. Ceram. Soc., 1996, vol. 79, pp. 1537–45.CrossRefGoogle Scholar
  31. 31.
    M.S.M. Noaman, Z. Lences, M. Vitkovič, Z. Gabrišovác, and M. Palou: Acta ChimICa Slovaca, 2009, vol. 2, pp. 3–13.Google Scholar
  32. 32.
    X. Yi, J. Niu, T. Akiyama, K. Harada, and I. Nakatsugawa: Ceram. Int., 2016, vol. 42, pp. 15687–15693.CrossRefGoogle Scholar
  33. 33.
    Z. Yang, Q. Shang, X. Shen, L. Zhang, J. Gao, and H. Wang: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 91–98.CrossRefGoogle Scholar
  34. 34.
    B. Haldar, S. Bandyopadhyay, and A.K. Mukhopadhyay: Ceram. Int., 2013, vol. 39, pp. 3405–08.CrossRefGoogle Scholar
  35. 35.
    M. Zenotchkine, R. Shuba, and I.W. Chen: J. Am. Ceram. Soc., 2002, vol. 85, pp. 1882–84.CrossRefGoogle Scholar
  36. 36.
    S. Kurama, I. Schulz, and M. Herrmann: J. Eur. Ceram. Soc., 2009, vol. 29, pp. 155–62.CrossRefGoogle Scholar
  37. 37.
    P. Reis, J.P. Davim, X. Xu, and J.M.F. Ferreira: Tribol. Lett., 2005, vol. 18, pp. 295−01.CrossRefGoogle Scholar
  38. 38.
    S. Kurama, I. Schulz, and M. Herrmann: J. Eur. Ceram. Soc., 2011, vol. 31, pp. 921–30.CrossRefGoogle Scholar
  39. 39.
    B. Joshi, K. Tripathi, G. Gyawal, and S.W. Lee: Progr. Nat. Sci. Mater. Int., 2016, vol. 26, pp. 415–21.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Mita Biswas
    • 1
  • Soumya Sarkar
    • 1
  • Siddhartha Bandyopadhyay
    • 1
    Email author
  1. 1.CSIR- Central Glass & Ceramic Research InstituteKolkataIndia

Personalised recommendations