Advertisement

Microstructure Development of 308L Stainless Steel During Additive Manufacturing

  • D. W. BrownEmail author
  • A. Losko
  • J. S. Carpenter
  • J. C. Cooley
  • B. Clausen
  • J. Dahal
  • P. Kenesei
  • J.-S. Park
Article
  • 44 Downloads

Abstract

In situ high-energy X-ray diffraction measurements were completed during deposition of 308L stainless steel wire onto a 304L stainless steel substrate. Attempts were made to extract microstructural features such as phase fraction and internal stress, as well as temperature evolution immediately following the deposition. The limited data that could be collected during deposition and rapid solidification are critically examined. High-energy X-rays coupled with relatively slow detectors were utilized to enable determination of orientation-dependent lattice parameters accurately enough to comment on phase strain evolution between austenite and ferrite. Information about the hydrostatic and deviatoric stress states of the constituent phases was determined on time scales that are relevant to their development. However, the time resolution of the technique was insufficient to monitor phase evolution during the solid–solid phase transformation and, more so, during solidification. Moreover, the accurate and absolute determination of inherently statistical parameters, such as phase fraction, depends critically on the ability to sample a statistically significant numbers of grains in the microstructure.

Notes

Acknowledgments

Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors wish to acknowledge and thank Mr. John Bernal of LANL and the APS 1-ID Beamline Staff, Ali Mashayekhi, and Roger Ranay, for their technical support at the experiments.

References

  1. 1.
    D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev., 2012, 3, vol. 57, pp. 133-164.CrossRefGoogle Scholar
  2. 2.
    [2] S.A. Davis, J.M. Vitek, T.L. Hebble, Welding Journal, 1987, vol. 66, pp. S289-S300.Google Scholar
  3. 3.
    Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, Philip J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nature Materials, 2017, vol. 17, pp. 63–71.CrossRefGoogle Scholar
  4. 4.
    V. Richter-Trummer, S.M.O. Tavares, P. Moreira, M.A.V. de Figueiredo, P. de Castro, Ciência & Tecnologia dos Materiais, 2008, 1-2, vol. 20, pp. 114-119.Google Scholar
  5. 5.
    L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo, Journal of Materials Research and Technology, 2012, 3, vol. 1, pp. 167-177.CrossRefGoogle Scholar
  6. 6.
    [6] R. Casati, M. Coduri, N. Lecis, C. Andrianopoli, M. Vedani, Materials Characterization, 2018, vol. 137, pp. 50-57.CrossRefGoogle Scholar
  7. 7.
    B.K. Foster, A.M. Beese, J.S. Keist, E.T. McHale, T.A. Palmer, Metall. Mater. Trans. A, 2017, 9, vol. 48A, pp. 4411-4422.CrossRefGoogle Scholar
  8. 8.
    D.W. Brown, J.D. Bernardin, J.S. Carpenter, B. Clausen, D. Spernjak, J.M. Thompson, Mater. Sci. Eng., A, 2016, vol. 678, pp. 291-298.CrossRefGoogle Scholar
  9. 9.
    P. Mercelis, J.P. Kruth, Rapid Prototyping Journal, 2006, 5, vol. 12, pp. 254-265.CrossRefGoogle Scholar
  10. 10.
    [10] A. Riemer, S. Leuders, M. Thoene, H.A. Richard, T. Troester, T. Niendorf, Eng. Fract. Mech., 2014, vol. 120, pp. 15-25.CrossRefGoogle Scholar
  11. 11.
    I. Yadroitsev, I. Yadroitsava, Virtual and Physical Prototyping, 2015, 2, vol. 10, pp. 67-76.CrossRefGoogle Scholar
  12. 12.
    [12] B.A. Szost, S. Terzi, F. Martina, D. Boisselier, A. Prytuliak, T. Pining, M. Hofmann, D.J. Jarvis, Mater. Des., 2016, vol. 89, pp. 559-567.CrossRefGoogle Scholar
  13. 13.
    A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, Metall. Mater. Trans. A, 2014, 13, vol. 45A, pp. 6260-6270.CrossRefGoogle Scholar
  14. 14.
    T. Watkins, H. Bilheux, K. An, A. Payzant, R. Dehoff, C. Duty, W. Peter, C. Blue, C. Brice, Adv. Mater. Processes, 2013, 3, vol. 171, pp. 23-27.Google Scholar
  15. 15.
    T. Gnaeupel-Herold, J. Slotwinski, and S. Moylan: in: 40th Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing, D.E. Chimenti, L.J. Bond, D.O. Thompson, eds., 2014, vols. 33a and 33b, pp. 1205–12.Google Scholar
  16. 16.
    [16] R. Xie, Y. Zhao, G. Chen, X. Lin, S. Zhang, S. Fan, Q. Shi, Mater. Des., 2018, vol. 150, pp. 49-54.CrossRefGoogle Scholar
  17. 17.
    [17] J.C. Heigel, P. Michaleris, T.A. Palmer, J. Mater. Process. Technol., 2015, vol. 220, pp. 135-145.CrossRefGoogle Scholar
  18. 18.
    J.W. Elmer, J. Wong, T. Ressler, Scr. Mater., 2000, 8, vol. 43, pp. 751-757.CrossRefGoogle Scholar
  19. 19.
    T. Ressler, J. Wong, J.W. Elmer, Journal of Physical Chemistry B, 1998, 52, vol. 102, pp. 10724-10735.CrossRefGoogle Scholar
  20. 20.
    C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, T. Sun, Scientific Reports, 2017, vol. 7, pp.Google Scholar
  21. 21.
    [21] C. Kenel, D. Grolimund, J.L. Fife, V.A. Samson, S. Van Petegem, H. Van Swygenhoven, C. Leinenbach, Scr. Mater., 2016, vol. 114, pp. 117-120.CrossRefGoogle Scholar
  22. 22.
    S. Selvi, A. Vishvaksenan, E. Rajasekar, Defence Technology, 2018, 1, vol. 14, pp. 28-44.CrossRefGoogle Scholar
  23. 23.
    D.R. Haeffner, J.D. Almer, U. Lienert, Mater. Sci. Eng., A, 2005, 1-2, vol. 399, pp. 120-127.CrossRefGoogle Scholar
  24. 24.
    Y. Ivanyushenkov, K. Harkay, M. Borland, R. Dejus, J. Dooling, C. Doose, L. Emery, J. Fuerst, J. Gagliano, Q. Hasse, M. Kasa, P. Kenesei, V. Sajaev, K. Schroeder, N. Sereno, S. Shastri, Y. Shiroyanagi, D. Skiadopoulos, M. Smith, X. Sun, E. Trakhtenberg, A. Xiao, A. Zholents, and E. Gluskin: Phys. Rev. Accel. Beams, 2017.Google Scholar
  25. 25.
    [25] S.D. Shastri, K. Fezzaa, A. Mashayekhi, W.K. Lee, P.B. Fernandez, P.L. Lee, J. Syncrotron Rad., 2002, vol. 9, pp. 317-322.CrossRefGoogle Scholar
  26. 26.
    J.H. Lee, C.C. Aydiner, J. Almer, J. Bernier, K.W. Chapman, P.J. Chupas, D. Haeffner, K. Kump, P.L. Lee, U. Lienert, A. Miceli, G. Vera, J. Syncrotron Rad., 2008, 5, vol. 15, pp. 477-488.CrossRefGoogle Scholar
  27. 27.
    [27] I.C. Noyan, J.B. Cohen, Residual Stress-Measurement by Diffraction and Interpretation, Springer-Verlag, New York., 1987.Google Scholar
  28. 28.
    A.C. Larson and R.B. Von Dreele: Los Alamos National Lab Report, Los Alamos, NM, 1986.Google Scholar
  29. 29.
    [29] B.H. Toby, R.B. Von Dreele, J. App. Crys., 2013, vol. 46, pp. 544-549.CrossRefGoogle Scholar
  30. 30.
    B. Clausen: Los Alamos National Lab Report, Los Alamos, NM, 2004.Google Scholar
  31. 31.
    [31] Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion: Metallic Elements and Alloys, Plenum Publishing Company, New York, 1975.CrossRefGoogle Scholar
  32. 32.
    [32] E.A. Owen, E.L. Yates, A.H. Sully, Proc. Phys. Soc, 1937, vol. 49, pp. 315–322.CrossRefGoogle Scholar
  33. 33.
    I.S. Smirnov, I.S. Monakhov, E.G. Novoselova, A.L. Udovskii, V.P. Kolotushkin, Metally, 2013, 1, vol. 2014, pp. 18-24.Google Scholar
  34. 34.
    P. Rangaswamy, C.P. Scherer, M.A.M. Bourke, Mater. Sci. Eng., A, 2001, #1-2, vol. 298, pp. 158-165.CrossRefGoogle Scholar
  35. 35.
    N. Singh, P.K. Sharma, Phys. Rev. B, 1971, 4, vol. 3, pp. 1141-&.CrossRefGoogle Scholar
  36. 36.
    [36] P.W. Hochanadel, T.J. Lienert, J.N. Martinez, R.J. Martinez, M.Q. Johnson, Weld Solidification Cracking in 304 to 304L Stainless Steel, in: T. Böllinghaus, J. Lippold, C.E. Cross (Eds.) Hot Cracking Phenomena in Welds III, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 145-160.CrossRefGoogle Scholar
  37. 37.
  38. 38.
    A.J. Beaudoin, P.A. Shade, J.C. Schuren, T.J. Turner, C. Woodward, J.V. Bernier, S.F. Li, D.M. Dimiduk, P. Kenesei, J.S. Park, Phys. Rev. B, 2017, 17, vol. 96,Google Scholar
  39. 39.
    [39] K. Chatterjee, A. Venkataraman, T. Garbaciak, J. Rotella, M.D. Sangid, A.J. Beaudoin, P. Kenesei, J.S. Park, A.L. Pilchak, Int. J. Solids Struct., 2016, vol. 94-95, pp. 35-49.CrossRefGoogle Scholar
  40. 40.
    [40] W. Tang, K.L. Halm, D.R. Trinkle, M.K.A. Koker, U. Lienert, P. Kenesei, A.J. Beaudoin, Acta Mater., 2015, vol. 101, pp. 71-79.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • D. W. Brown
    • 1
    Email author
  • A. Losko
    • 1
  • J. S. Carpenter
    • 1
  • J. C. Cooley
    • 1
  • B. Clausen
    • 1
  • J. Dahal
    • 2
  • P. Kenesei
    • 3
  • J.-S. Park
    • 3
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Department of Mechanical EngineeringColorado School of MinesGoldenUSA
  3. 3.Argonne National LaboratoryLemontUSA

Personalised recommendations