Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2486–2494 | Cite as

Development of Through-Thickness Cube Recrystallization Texture in Non-oriented Electrical Steels by Optimizing Nucleation Environment

  • Ning Shan
  • Jinlong LiuEmail author
  • Yuhui ShaEmail author
  • Fang Zhang
  • Liang Zuo
Article
  • 82 Downloads

Abstract

Texture evolution of 2.1 wt pct Si non-oriented electrical steel sheets was investigated using macro- and micro-texture analysis. The desirable cube ({001}〈100〉) component successfully dominates the recrystallization texture through sheet thickness. The nucleation sites of cube grains are mainly identified at the interfaces of {001}〈230〉-{001}〈130〉 and {223}〈362〉-{114}〈481〉 oriented deformation bands. The formation of through-thickness cube recrystallization texture can be attributed to the optimization of nucleation environment, featuring quantitative advantage of cube nuclei at both strong plane strain and strong shear strain layers under the superiority of locally low density of cube nuclei.

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2016YFB0300305), the National Natural Science Foundation of China (51671049), the Fundamental Research Funds for the Central Universities (N170213019), and the China Scholarship Council (CSC) (201806085006).

References

  1. 1.
    N.R. Overman, X.J. Jiang, R.K. Kukkadapu, T. Clark, T.J. Roosendaal, G. Coffey, J.E. Shield, and S.N. Mathaudhu: Mater. Charact., 2018, vol. 136, pp. 212–20.CrossRefGoogle Scholar
  2. 2.
    M. Garibaldi, I. Ashcroft, M. Simonelli, and R. Hague: Acta Mater., 2016, vol. 110, pp. 207–16.CrossRefGoogle Scholar
  3. 3.
    S.K. Chang: J. Mater. Sci., 2006, vol. 41 (22), pp. 7380–86.CrossRefGoogle Scholar
  4. 4.
    Y. Wan, W.Q. Chen, and S.J. Wu (2013) J. Rare Earths 31 (7):727–33.CrossRefGoogle Scholar
  5. 5.
    N. Rajmohan, Y. Hayakawa, J.A. Szpunar, and J.H. Root: Acta Mater., 1997, vol. 45 (6), pp. 2485–94.CrossRefGoogle Scholar
  6. 6.
    H. Inagaki: Trans. JIM, 1987, vol. 28 (4), pp. 251–63.CrossRefGoogle Scholar
  7. 7.
    J.T. Park and J.A. Szpunar: Acta Mater., 2003, vol. 51 (11), pp. 3037–51.CrossRefGoogle Scholar
  8. 8.
    J.T. Park and J.A. Szpunar: J. Magn. Magn. Mater., 2009, vol. 321 (13), pp. 1928–32.CrossRefGoogle Scholar
  9. 9.
    M.A. Cunha and S.C. Paolinelli: J. Magn. Magn. Mater., 2008, vol. 320 (20), pp. 2485–89.CrossRefGoogle Scholar
  10. 10.
    F. Grégori, K. Murakami, and B. Bacroix: J. Mater. Sci., 2014, vol. 49 (4), pp. 1764–75.CrossRefGoogle Scholar
  11. 11.
    S.K. Nam, G.H. Kim, D.N. Lee, and I. Kim: Metall. Mater. Trans. A, 2018, vol. 49 (5), pp. 1841–50.CrossRefGoogle Scholar
  12. 12.
    M. Matsuo, T. Sakai, and Y. Suga: Metall. Trans. A, 1986, vol. 17 (8), pp. 1313–22.CrossRefGoogle Scholar
  13. 13.
    N. Zhang, P. Yang, and W.M. Mao: Mater. Lett., 2013, vol. 93, pp. 363–65.CrossRefGoogle Scholar
  14. 14.
    A. Sonboli, M.R. Toroghinejad, H. Edris, and J.A. Szpunar: J. Magn. Magn. Mater., 2015, vol. 385, pp. 331–38.CrossRefGoogle Scholar
  15. 15.
    M. Sanjari, Y. He, E.J. Hilinski, S. Yue, and L.A.I. Kestens: J. Mater. Sci., 2017, vol. 52 (6), pp. 3281–3300.CrossRefGoogle Scholar
  16. 16.
    R.Y. Liang, P. Yang, and W.M. Mao: J. Magn. Magn. Mater., 2018, vol. 457, pp. 38–45.CrossRefGoogle Scholar
  17. 17.
    Y.B. Xu, Y.X. Zhang, Y. Wang, C.G. Li, G.M. Cao, Z.Y. Liu, and G.D. Wang: Scripta Mater., 2014, vol. 87, pp. 17–20.CrossRefGoogle Scholar
  18. 18.
    Y.H. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S.R. Kalidindi, and L. Zuo: Acta Mater., 2014, vol. 76, pp. 106–17.CrossRefGoogle Scholar
  19. 19.
    T. Tomida, N. Sano, K. Ueda, K. Fujiwara, and N. Takahashi: J. Magn. Magn. Mater., 2003, vols. 254–255, pp. 315–17.CrossRefGoogle Scholar
  20. 20.
    S. Lee and B.C. De Cooman: ISIJ Int., 2011, vol. 51 (9), pp. 1545–52.CrossRefGoogle Scholar
  21. 21.
    M. Atake, M. Barnett, B. Hutchinson, and K. Ushioda: Acta Mater., 2015, vol. 96, pp. 410–19.CrossRefGoogle Scholar
  22. 22.
    M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37 (7), pp. 697–705.CrossRefGoogle Scholar
  23. 23.
    B. Hutchinson (1999) Philos. Trans. R. Soc. Lond. A 357 (1756):1471–85.CrossRefGoogle Scholar
  24. 24.
    M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37 (7), pp. 706–14.CrossRefGoogle Scholar
  25. 25.
    T. Haratani, W.B. Hutchinson, I.L. Dillamore, and P. Bate: Met. Sci., 1984, vol. 18 (2), pp. 57–66.CrossRefGoogle Scholar
  26. 26.
    K. Ushioda and W.B. Hutchinson: ISIJ Int., 1989, vol. 29 (10), pp. 862–67.CrossRefGoogle Scholar
  27. 27.
    D. Dorner, S. Zaefferer, and D. Raabe: Acta Mater., 2007, vol. 55 (7), pp. 2519–30.CrossRefGoogle Scholar
  28. 28.
    H.T. Liu, J. Schneider, H.L. Li, Y. Sun, F. Gao, H.H. Lu, H.Y. Song, L. Li, D.Q. Geng, Z.Y. Liu, and G.D. Wang: J. Magn. Magn. Mater., 2015, vol. 374, pp. 577–86.CrossRefGoogle Scholar
  29. 29.
    N. Shan, Y.H. Sha, F. Zhang, J.L. Liu, and L. Zuo: Metall. Mater. Trans. A, 2016, vol. 47 (12), pp. 5777–82.CrossRefGoogle Scholar
  30. 30.
    H. Nakamichi, F.J. Humphreys, and I. Brough: J. Microsc., 2008, vol. 230 (3), pp. 464–71.CrossRefGoogle Scholar
  31. 31.
    D.I. Kim, J.S. Kim, J.H. Kim, and S.H. Choi: Acta Mater., 2014, vol. 68, pp. 9–18.CrossRefGoogle Scholar
  32. 32.
    W.C. Hsu, L.W. Chang, P.W. Kao, and I.C. Hsiao: ISIJ Int., 2018, vol. 58 (5), pp. 958–64.CrossRefGoogle Scholar
  33. 33.
    S. Mishra, C. Därmann, and K. Lücke: Acta Metall., 1984, vol. 32 (12), pp. 2185–2201.CrossRefGoogle Scholar
  34. 34.
    C.G. Pei, P.K. Bai, and Z.X. Guo: Appl. Mech. Mater., 2013, vols. 423–426, pp. 286–89.CrossRefGoogle Scholar
  35. 35.
    S.C. Paolinelli, M.A. Cunha, and A.B. Cota: Mater. Sci. Forum, 2007, vols. 558–559, pp. 787–92.CrossRefGoogle Scholar
  36. 36.
    K.M. Lee, M.Y. Huh, H.J. Lee, J.T. Park, J.S. Kim, E.J. Shin, and O. Engler: J. Magn. Magn. Mater., 2015, vol. 396, pp. 53–64.CrossRefGoogle Scholar
  37. 37.
    P. Gobernado, R.H. Petrov, and L.A.I. Kestens: Scripta Mater., 2012, vol. 66 (9), pp. 623–26.CrossRefGoogle Scholar
  38. 38.
    H. Inagaki: ISIJ Int., 1994, vol. 34 (4), pp. 313–21.CrossRefGoogle Scholar
  39. 39.
    D. Stojakovic, R.D. Doherty, S.R. Kalidindi, and F.J.G. Landgraf: Metall. Mater. Trans. A, 2008, vol. 39 (7), pp. 1738–46.CrossRefGoogle Scholar
  40. 40.
    H. Abe, M. Matsuo, and K. Ito: Trans. JIM, 1963, vol. 4 (1), pp. 28–32.CrossRefGoogle Scholar
  41. 41.
    I. Samajdar and R.D. Doherty: Acta Mater., 1998, vol. 46 (9), pp. 3145–58.CrossRefGoogle Scholar
  42. 42.
    Y.Y. Tse, G.L. Liu, and B.J. Duggan: Scripta Mater., 1999, vol. 42 (1), pp. 25–30.CrossRefGoogle Scholar
  43. 43.
    I.L. Dillamore, P.L. Morris, C.J.E. Smith, and W.B. Hutchinson (1972) Proc. R. Soc. Lond. A 329 (1579):405–20.CrossRefGoogle Scholar
  44. 44.
    S.F. Castro, J. Gallego, F.J.G. Landgraf, and H.J. Kestenbach: Mater. Sci. Eng. A, 2006, vol. 427 (1–2), pp. 301–05.CrossRefGoogle Scholar
  45. 45.
    O. Engler: Acta Mater., 1998, vol. 46 (5), pp. 1555–68.CrossRefGoogle Scholar
  46. 46.
    H.T. Liu, Z.Y. Liu, Y. Sun, Y.Q. Qiu, C.G. Li, G.M. Cao, B.D. Hong, S.H. Kim, and G.D. Wang: Mater. Lett., 2012, vol. 81, pp. 65–68.CrossRefGoogle Scholar
  47. 47.
    T. Nguyen-Minh, J.J. Sidor, R.H. Petrov, and L.A.I. Kestens: Scripta Mater., 2012, vol. 67 (12), pp. 935–38.CrossRefGoogle Scholar
  48. 48.
    L.A.I. Kestens and J.J. Jonas: Metall. Mater. Trans. A, 1996, vol. 27 (1), pp. 155–64.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations