Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2371–2380 | Cite as

Flow Stress Evolution in Further Straining of Severely Deformed Al

  • V. Charkhesht
  • M. KazeminezhadEmail author
Article
  • 49 Downloads

Abstract

To investigate the flow stress evolution in further straining of severely deformed Al sheets, a comprehensive model which considers both mechanical and metallurgical alterations is needed. In this study, constrained groove pressing (CGP) as a severe plastic deformation method, and a flat rolling process for further straining are utilized. Using basic mechanical models, strain and strain rate were calculated for this process. Dislocation density and flow stress evolutions were predicted by utilizing initial mechanical data, considering the ETMB (Y. Estrin, L. S. Toth, A. Molinari, and Y. Brechet) dislocation density model. Based on these model predictions, the combination of the CGP process with a further rolling process results in higher flow stresses than repeating the specific process discretely. This phenomenon can be attributed to the ability of the rolling process to produce a greater strain rate, which, in turn, leads to the higher flow stresses. Thorough data from the mechanical tests as well as X-ray diffraction profiles strongly support the validity of the model in the prediction of flow stress and dislocation density, respectively.

Notes

Acknowledgments

The authors wish to thank the research board of Sharif University of Technology for the financial support and the provision of the research facilities used in this work.

References

  1. 1.
    A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji and A. Rosochowski: CIRP Annals-Manuf. Technol., 2008, Vol. 57, pp. 716-735.CrossRefGoogle Scholar
  2. 2.
    I. Sabirov, M. Y. Murashkin and R. Z. Valiev: Mater. Sci. Eng. A, 2013, Vol. 560, pp. 1-24.CrossRefGoogle Scholar
  3. 3.
    A. Dodangeh, M. Kazeminezhad and H. Aashuri: Mater. Sci. Eng. A, 2012, Vol. 558, pp. 371-376.CrossRefGoogle Scholar
  4. 4.
    V. M. Segal: Mater. Sci. Eng. A, 1999, Vol. 271, pp. 322-333.CrossRefGoogle Scholar
  5. 5.
    R. Z. Valiev, Langdon T G,, Prog. Mater. Sci., 2006, Vol. 51, pp. 881-981.CrossRefGoogle Scholar
  6. 6.
    N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu, and M. Kiritani: Mater. Sci. Eng. A, 2003, Vol. 350, pp. 108-116.CrossRefGoogle Scholar
  7. 7.
    J. Jiang, Y. Ding, F. Zuo and A. Shan: Scripta Mater., 2009, Vol. 60, pp. 905-908.CrossRefGoogle Scholar
  8. 8.
    V. Charkhesht, and M. Kazeminezhad: J. Mater. Eng. Perform., 2017, Vol. 26, pp. 1311–24.Google Scholar
  9. 9.
    E. A. El-Danaf: Mater. Design, 2012, Vol. 34, pp. 793-807.CrossRefGoogle Scholar
  10. 10.
    N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Raab and R. Z. Valiev: Mater. Sci. Eng. A, 2012, Vol. 554, pp. 105-115.CrossRefGoogle Scholar
  11. 11.
    S. Li, AA. Gazder, IJ. Beyerlein, CH. Davies, EV. Pereloma: Acta Mater., 2007, Vol. 55, pp. 1017-1032.CrossRefGoogle Scholar
  12. 12.
    Y. Estrin, L. S. Toth, A. Molinari and Y. Brechet: Acta Mater., 1998, Vol. 46, pp. 5509-5522.CrossRefGoogle Scholar
  13. 13.
    M. Goerdeler and G. Gottstein: Mater. Sci. Eng. A, 2001, Vol. 309, pp. 377-381.CrossRefGoogle Scholar
  14. 14.
    B. Mülders, M. Zehetbauer, G. Gottstein, P. Les, and E. Schafler, Mater. Sci. Eng. A, 2002, Vol. 324, pp. 244–250.Google Scholar
  15. 15.
    G. V. S. S. Prasad, M. Goerdeler and G. Gottstein: Mater. Sci. Eng. A, 2005, Vol. 400, pp. 231-233.CrossRefGoogle Scholar
  16. 16.
    F. Roters, D. Raabe and G. Gottstein: Acta Mater., 2000, Vol. 48, pp. 4181-4189.CrossRefGoogle Scholar
  17. 17.
    A. Ma and F. Roters: Acta Mater., 2004, Vol. 52, pp. 3603-3612.CrossRefGoogle Scholar
  18. 18.
    L. S. Tóth, A. Molinari and Y. Estrin: J. Eng. Mater. Technol., 2002, Vol. 124, pp. 71.CrossRefGoogle Scholar
  19. 19.
    E. Hosseini and M. Kazeminezhad,, Int. J. Refract. Met. H., 2009, Vol. 27, pp. 605-610.CrossRefGoogle Scholar
  20. 20.
    E. Hosseini and M. Kazeminezhad: Comp. Mater. Sci., 2011, Vol. 50, pp. 1123-1135.CrossRefGoogle Scholar
  21. 21.
    E. Hosseini, M. Kazeminezhad, A. Mani and E. Rafizadeh, Comp. Mater. Sci., 2009, Vol. 45, pp. 855-859.CrossRefGoogle Scholar
  22. 22.
    E. Hosseini and M. Kazeminezhad: Comp. Mater. Sci., 2009, Vol. 46, pp. 902-905.CrossRefGoogle Scholar
  23. 23.
    E. Hosseini and M. Kazeminezhad: Mater. Design, 2011, Vol. 32, pp. 487-494.CrossRefGoogle Scholar
  24. 24.
    E. Hosseini and M. Kazeminezhad: Comp. Mater. Sci., 2010, Vol. 48, pp. 166-173.CrossRefGoogle Scholar
  25. 25.
    P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, and M.K. Mitra: Acta Mater., 2004, Vol. 52, pp. 5687–96.Google Scholar
  26. 26.
    Z. Zhang, F. Zhou, and E. J. Lavernia: Metall. Mater. Trans A, 2003, Vol. 34, pp. 1349-1355.CrossRefGoogle Scholar
  27. 27.
    E. Schafler, M. Zehetbauer, and T. Ungar: Mater. Sci. Eng. A, 2001, Vol. 319, pp. 220-223.CrossRefGoogle Scholar
  28. 28.
    G. K. Williamson and W. H. Hall: Acta Mater., 1953, Vol. 1, pp. 22-31.CrossRefGoogle Scholar
  29. 29.
    T. Ungár, G. Tichy: Physica Status Solidi (a), 1999, Vol. 171 (2), pp. 425–34.Google Scholar
  30. 30.
    M. Wilkens: Physica Status Solidi (a). 1970, Vol. 2 (2), pp. 359–70.Google Scholar
  31. 31.
    B. Peeters, M. Seefeldt, C. Teodosiu, S. R. Kalidindi, P. Van Houtte and E. Aernoudt: Acta Mater., 2001, Vol. 49, pp. 1607-1619.CrossRefGoogle Scholar
  32. 32.
    G.J. Richardson, D.N. Hawkins and C.M. Sellars: Worked examples in metalworking, 1985, Institute of Metals, London.Google Scholar
  33. 33.
    S.A. Argon: Strengthening Mechanisms in Crystal Plasticity, 2008, Oxford University Press, Oxford.Google Scholar
  34. 34.
    R. Lapovok, F.H. Dalla Torre, J. Sandlin, C.H.J. Davies, E.V. Pereloma, P.F. Thomson, and Y. Estrin: J. Mech. Phys. Solids, 2005, Vol. 53, pp. 729–47.Google Scholar
  35. 35.
    S.C. Baik, Y. Estrin, H.S. Kim, R.J. Hellmig: Mater. Sci. Eng. A, 2003, Vol. 351(1-2), pp. 86-97.CrossRefGoogle Scholar
  36. 36.
    F.A. Mohamed: Acta Mater., 2003, Vol. 51(14), pp. 4107-4119.CrossRefGoogle Scholar
  37. 37.
    P. Les, M. Zehetbauer, I. Kopacz, and E.F. Rauch: Scripta Mater., 1999, Vol. 41(5).Google Scholar
  38. 38.
    S.R. Bahadori, K. Dehghani, and F. Bakhshandeh: Mater. Sci. Eng. A, 2013, Vol. 588, pp. 260–264.CrossRefGoogle Scholar
  39. 39.
    N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Raab, and R. Valiev: Mater. Sci. Forum, 2011, Vol. 667, pp. 295-300.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations