Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2356–2370 | Cite as

Dissolution of the Alpha Phase in Ti-6Al-4V During Isothermal and Continuous Heat Treatment

  • S. L. SemiatinEmail author
  • M. Obstalecki
  • E. J. Payton
  • A. L. Pilchak
  • P. A. Shade
  • N. C. Levkulich
  • J. M. Shank
  • D. C. Pagan
  • F. Zhang
  • J. S. Tiley
Article
  • 95 Downloads

Abstract

The kinetics of the dissolution of the equiaxed alpha phase into the beta matrix in Ti-6Al-4V were established and modeled for both isothermal (constant temperature) and transient/continuous heating conditions. For the isothermal experiments, samples were solution treated at a subtransus temperature to equilibrate the microstructure followed by rapid, direct-resistance heating to a temperature either 25 K or 78 K (25 °C or 78 °C) above the equilibrium beta transus and held for times ranging from 1 to 32 seconds. Dissolution behavior under transient conditions was determined in-situ using an indirect-resistance furnace and X-ray (synchrotron) source; these trials comprised a similar initial subtransus solution heat treatment followed by continuous heating at a constant rate in the range between 15 and 135 K/min (15 and 135 °C/min) to a temperature lying 25 K (25 °C) above the transus. Measurements of the temporal evolution of the volume fraction of alpha were interpreted using numerical simulations based on the Whelan dissolution model modified to treat a distribution of particle sizes and the possible interaction of the concentration gradients developed around adjacent particles; i.e., soft impingement. The isothermal dissolution measurements were bounded by predictions from simulations with and without the soft-impingement assumption. Similar trends were found for continuous-heating behavior. In particular, slow or fast heating-rate observations were replicated by simulation predictions with or without the soft-impingement constraint, respectively.

Notes

Acknowledgments

This work was conducted as part of the in-house research of the Metals Branch of the Air Force Research Laboratory’s Materials and Manufacturing Directorate. The support and encouragement of the laboratory management and the Air Force Office of Scientific Research is greatly appreciated. The synchrotron measurements were performed at the Cornell High-Energy Synchrotron Source (CHESS) which is supported by the National Science Foundation under Award DMR-1332208. The yeoman assistance of P.N. Fagin, J.O. Brown, T.M. Brown, and C.P. Lingane in conducting the experiments is gratefully acknowledged. Technical discussions with Dr. T.F. Broderick (GE Aviation), Dr. S.S. Babu (University of Tennnessee), and Dr. P.E. Markovsky (Institute for Metal Physics, Kiev, Ukraine) are also appreciated. Two of the authors (NCL, JMS) were supported under the auspices of Contract FA8650-15-D-5230.

References

  1. 1.
    A.L. Pilchak, G.A. Sargent, and S.L. Semiatin: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 908-919.CrossRefGoogle Scholar
  2. 2.
    P.R. Rios: Acta Mater., 1997, vol. 45, pp. 1785-1789.CrossRefGoogle Scholar
  3. 3.
    S.L. Semiatin, K.E. McClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, and T.P. Gabb, Metall. and Mater. Trans. A, 2013, vol. 44A, pp. 2778-2798.CrossRefGoogle Scholar
  4. 4.
    J. Gayda, T.P. Gabb, and P.T. Kantzos: Superalloys 2004, eds. K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, TMS, Warrendale, PA, 2004, pp. 323–30.Google Scholar
  5. 5.
    S.L. Semiatin and D.R. Barker, “Rapid Heat Treatment of Nonferrous Metals and Alloys to Obtain Graded Microstructures,” US Patent 5447580, September 1995.Google Scholar
  6. 6.
    V.A. Gridnev, O.M. Ivasishin, and P.E. Markovskii: Metal Sci. Heat Treatment, 1985, vol. 25, pp. 43-48.CrossRefGoogle Scholar
  7. 7.
    O.M. Ivasishin and S.L. Semiatin: Proc. THERMEC 2000, T. Chandra, ed., Elsevier Science Ltd., Amsterdam, Netherlands, 2001.Google Scholar
  8. 8.
    D.W. Mahaffey, O.N. Senkov, R. Shivpuri, and S.L. Semiatin: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3981-4000.CrossRefGoogle Scholar
  9. 9.
    O.N. Senkov, D.W. Mahaffey, and S.L. Semiatin: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5428–5444.CrossRefGoogle Scholar
  10. 10.
    D.L. Baty, R.A. Tanzilli, and R.W. Heckel: Metall. Trans., 1970, vol. 1, pp. 1651-1656.CrossRefGoogle Scholar
  11. 11.
    J. Cormier, X. Milhet, and J. Mendez: J. Mater. Sci., 2007, vol. 42, pp. 7780-7786CrossRefGoogle Scholar
  12. 12.
    E.J. Payton, T.A. Wynn, and M.J. Mills: J. Mater. Sci., 2012, vol. 20, pp. 7305-7311CrossRefGoogle Scholar
  13. 13.
    F. Masoumi, M. Jahazi, D. Shahriari, and J. Cormier: J. Alloys Comp., 2016, vol. 658, pp. 981-995CrossRefGoogle Scholar
  14. 14.
    J.M. Papzian: Metall. Trans. A, 1982, vol. 13A, pp. 761-769.CrossRefGoogle Scholar
  15. 15.
    A. Luo, D.J. Lloyd, A. Gupta, and W.V. Youdelis: Acta Metal. Mater., 1993, 41, 769-776.CrossRefGoogle Scholar
  16. 16.
    M. Soucail and Y. Bienvenu: Mater. Sci. Eng. A, 1996, vol. A220, pp. 215-222.CrossRefGoogle Scholar
  17. 17.
    S.L. Semiatin, N.C. Levkulich, A.E. Saurber, D.W. Mahaffey, E.J. Payton, and O.N. Senkov: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 5567-5578.CrossRefGoogle Scholar
  18. 18.
    H. Boekels and H.J. Rack: in Ti-2015: Proceedings of the 13th World Conference on Titanium, V. Venkatesh, et al., eds., TMS, Warrendale, PA, 2016, pp. 285–90.Google Scholar
  19. 19.
    F. Bruneseaux, E. Aeby-Gautier, G. Geandier, J. Teixeira, B. Appolaire, P. Weisbecker, and A. Mauro: Mater. Sci. Eng. A, 2008, A476, 60-68.CrossRefGoogle Scholar
  20. 20.
    M. Dehmas, R. Katerni, B. Appolaire, E. Aeby-Gautier, B. Denand, and S. Audion: in Ti-2011, Proceedings of the 12th World Conference on Titanium, L. Zhou, H. Chang, Y. Lu, and D. Xu, eds., Nonferrous Metals Society of China, Beijing, 2011, pp. 719–23.Google Scholar
  21. 21.
    A Idhil Ismail, M. Dehmas, E. Aeby-Gautier, and B. Appolaire: in Ti-2015: Proceedings of the 13th World Conference on Titanium, eds. V. Venkatesh, et al., MS, Warrendale, OH, 2016, pp. 593–98.Google Scholar
  22. 22.
    M.J. Whelan: Metal Sci. Journal, 1969, vol. 3, pp. 95–97.CrossRefGoogle Scholar
  23. 23.
    H.B. Aaron and G.R. Kotler: Metall. Trans., 1971, vol. 2, pp. 393-408.CrossRefGoogle Scholar
  24. 24.
    H.B. Aaron and G.R. Kotler: Metal Sci. Journal, 1970, vol. 4, 222-225.CrossRefGoogle Scholar
  25. 25.
    G. Wang, D.S. Xu, N. Ma, N. Zhou, E.J. Payton, R. Yang, M.J. Mills, and Y. Wang: Acta Mater., 2009, vol. 57, pp. 316-325.CrossRefGoogle Scholar
  26. 26.
    B. Appolaire, J. Da Costa-Teixeira, E. Aeby-Gautier, and F. Bruneseaux: in Ti 2007, Science and Technology, eds. M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama, Japan Institute of Metals, Kyoto, 2007, pp. 961-964.Google Scholar
  27. 27.
    R. Castro and L. Seraphin: Mém. Sci. Rev. Metall., 1966, vol. 63, pp. 1025-1058.CrossRefGoogle Scholar
  28. 28.
    S.L. Semiatin, F. Montheillet, G. Shen, and J.J. Jonas: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2719-2727.CrossRefGoogle Scholar
  29. 29.
    S.L. Semiatin, D.W. Mahaffey, N.C. Levkulich, and O.N. Senkov: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 5357-5367.CrossRefGoogle Scholar
  30. 30.
    S.L. Semiatin, N.C. Levkulich, A.R.C. Gerlt, E.J. Payton, J.S. Tiley, F. Zhang, R.A. MacKay, R.V. Miner, and T.P. Gabb: Metall. Mater. Trans. A, 2019.  https://doi.org/10.1007/s11661-018-05104-w.Google Scholar
  31. 31.
    A.R.C. Gerlt, R.S. Picard, A.E. Sauber, A.K. Criner, S.L. Semiatin, and E.J. Payton: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4424-4428.CrossRefGoogle Scholar
  32. 32.
    O. Grong and H.R. Shercliff: Progress in Materials Science, 2002, vol. 47, pp. 163-282.CrossRefGoogle Scholar
  33. 33.
    S.L. Semiatin, B.C. Kirby, and G.A. Salishchev: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2809-2819CrossRefGoogle Scholar
  34. 34.
    J.D. Miller and S.L. Semiatin: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 259-262.CrossRefGoogle Scholar
  35. 35.
    H.B. Aaron, D. Fainstein, and G.R. Kotler: J Appl. Physics, 1970, vol. 41, pp. 4404-4410.CrossRefGoogle Scholar
  36. 36.
    H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Oxford University Press, London, 1959.Google Scholar
  37. 37.
    S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2377-2386.CrossRefGoogle Scholar
  38. 38.
    P.E. Markovsky: Scripta Metall. et Mater., 1991, vol. 25, pp. 2705-2710.CrossRefGoogle Scholar
  39. 39.
    O.M. Ivasishin, P.E. Markovsky, and E.I. Sharipov: J. Mat. Prod. Techn., 1993, 8, 204-212.Google Scholar
  40. 40.
    N.C. Levkulich: MS Thesis, Wright State University, Dayton, 2017. https://etd.ohiolink.edu/pg_10?115357049926602::NO:10:P10_ETD_SUBID:159800

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • S. L. Semiatin
    • 1
    Email author
  • M. Obstalecki
    • 1
  • E. J. Payton
    • 1
  • A. L. Pilchak
    • 1
  • P. A. Shade
    • 1
  • N. C. Levkulich
    • 2
  • J. M. Shank
    • 2
  • D. C. Pagan
    • 3
  • F. Zhang
    • 4
  • J. S. Tiley
    • 1
  1. 1.Air Force Research Laboratory, Materials and Manufacturing DirectorateWright-Patterson Air Force BaseUSA
  2. 2.UES, Inc.DaytonUSA
  3. 3.Cornell High Energy Synchrotron SourceIthacaUSA
  4. 4.CompuTherm LLCMiddletonUSA

Personalised recommendations