In situ Investigation of the Heterogeneous Nucleation Sequence in Al-15 Weight Percent Cu Alloy Inoculated by Al-Ti-B

  • Yiwang Jia
  • Donghong Wang
  • Yanan Fu
  • Anping Dong
  • Guoliang Zhu
  • Da ShuEmail author
  • Baode Sun


The sequence of heterogeneous nucleation events is investigated in situ via synchrotron-based X-ray radiography on Al-15 wt pct Cu alloy. In addition to the normal wave-like nucleation, which is predominant ahead of the solidification front when the temperature gradient moves across the field of view, two other types of nucleation are observed: nucleation among the growing grains and nucleation at one site. The nucleation among the growing grains occurs on the less potent TiB2 particles and accounts for ~ 20 pct regardless of the cooling rates. The third type is the nucleation at one site at cooling rates below 8 K/min and gradually weakens with the increasing cooling rate, which is probably due to the agglomeration of inoculant particles. The latter two types of nucleation are believed to be important for increasing the efficiency of nucleant particles.



The authors express their gratitude for the financial support from the National Science Foundation of China (Nos. 51821001, U1832183, and 51771118).

Supplementary material

11661_2019_5144_MOESM1_ESM.mp4 (12.3 mb)
Supplementary material 1 (MP4 12614 kb)
11661_2019_5144_MOESM2_ESM.mp4 (3.9 mb)
Supplementary material 2 (MP4 4021 kb)


  1. 1.
    T. E. Quested: Mater Sci Tech Ser 2004, vol. 20, pp. 1357-1369.CrossRefGoogle Scholar
  2. 2.
    A.L. Greer: Solidification of Aluminum Alloys 2004, pp. 131–45.Google Scholar
  3. 3.
    A. L. Greer: Philos T R Soc A 2003, vol. 361, pp. 479-494.CrossRefGoogle Scholar
  4. 4.
    B. S. Murty, S. A. Kori and M. Chakraborty: Int Mater Rev 2002, vol. 47, pp. 3-29.CrossRefGoogle Scholar
  5. 5.
    Mark Easton and David StJohn: Metall and Mat Trans A 1999, vol. 30, pp. 1625-1633.CrossRefGoogle Scholar
  6. 6.
    Mark Easton and David StJohn, Metall and Mat Trans A 1999, vol. 30, pp. 1613-1623.CrossRefGoogle Scholar
  7. 7.
    D. G. McCartney: Int Mater Rev 1989, vol. 34, pp. 247-260.CrossRefGoogle Scholar
  8. 8.
    T. E. Quested and A. L. Greer: Acta Mater 2004, vol. 52, pp. 3859-3868.CrossRefGoogle Scholar
  9. 9.
    A. L. Greer: A. M. Bunn, A. Tronche, P. V. Evans and D. J. Bristow, Acta Mater 2000, vol. 48, pp. 2823-2835.CrossRefGoogle Scholar
  10. 10.
    T. E. Quested and A. L. Greer: Mater Sci Tech Ser 2005, vol. 21, pp. 985-994.CrossRefGoogle Scholar
  11. 11.
    T. E. Quested, A. T. Dinsdale and A. L. Greer: Acta Mater 2005, vol. 53, pp. 1323-1334.CrossRefGoogle Scholar
  12. 12.
    Q. Du and Y. J. Li: Acta Mater 2014, vol. 71, pp. 380-389.CrossRefGoogle Scholar
  13. 13.
    D. Shu, B. Sun, J. Mi and P. S. Grant: Acta Mater 2011, vol. 59, pp. 2135-2144.CrossRefGoogle Scholar
  14. 14.
    X. B. Qi, Y. Chen, X. H. Kang, D. Z. Li and Q. Du: Acta Mater 2015, vol. 99, pp. 337-346.CrossRefGoogle Scholar
  15. 15.
    D. H. StJohn, M. Qian, M. A. Easton and P. Cao: Acta Mater 2011, vol. 59, pp. 4907-4921.CrossRefGoogle Scholar
  16. 16.
    M. Qian, P. Cao, M. A. Easton, S. D. McDonald and D. H. StJohn, Acta Mater 2010, vol. 58, pp. 3262-3270.CrossRefGoogle Scholar
  17. 17.
    M. A. Easton and D. H. StJohn: Acta Mater 2001, vol. 49, pp. 1867-1878.CrossRefGoogle Scholar
  18. 18.
    Y.J. Xu, D. Casari, Q. Du, R.H. Mathiesen, L. Arnberg and Y.J. Li: Acta Mater. 2017, 140, pp. 224-239.CrossRefGoogle Scholar
  19. 19.
    Y. J. Xu, D. Casari, R. H. Mathiesen and Y. J. Li: Acta Mater 2018, vol. 149, pp. 312-325.CrossRefGoogle Scholar
  20. 20.
    R. Gerloff, W. Heyroth, W. W. Reif, U. Schmidt and T. Wand: Metall 1996, vol. 50, pp. 97-101.Google Scholar
  21. 21.
    M.A. Kearns, S.R. Thistlethwaite and P.S. Cooper: Miner. Met. Mater. Soc. 1996, pp. 713–20.Google Scholar
  22. 22.
    A. A. Rao, B. S. Murty and M. Chakraborty: Mater Sci Tech Ser 1997, vol. 13, pp. 769-777.CrossRefGoogle Scholar
  23. 23.
    A. M. Bunn, P. Schumacher, M. A. Kearns, C. B. Boothroyd and A. L. Greer: Mater Sci Tech Ser 1999, vol. 15, pp. 1115-1123.CrossRefGoogle Scholar
  24. 24.
    D. Qiu, J. A. Taylor and M. X. Zhang: Metall Mater Trans A 2010, vol. 41A, pp. 3412-3421.CrossRefGoogle Scholar
  25. 25.
    Y. Wang, L. Zhou and Z. Y. Fan: Light Metals 2016, pp 725–29.Google Scholar
  26. 26.
    L. Abou-Khalil, G. Salloum-Abou-Jaoude, G. Reinhart, C. Pickmann, G. Zimmermann and H. Nguyen-Thi: Acta Mater 2016, vol. 110, pp. 44-52.CrossRefGoogle Scholar
  27. 27.
    A. G. Murphy, W. U. Mirihanage, D. J. Browne and R. H. Mathiesen: Acta Mater 2015, vol. 95, pp. 83-89.CrossRefGoogle Scholar
  28. 28.
    A.G. Murphy, W.U. Mirihanage, D.J. Browne and R.H. Mathiesen: in Proceedings of the International Astronautical Congress, IAC, 2014, pp. 559–65.Google Scholar
  29. 29.
    E. Liotti, C. Arteta, A. Zisserman, A. Lui, V. Lempitsky and P. S. Grant: Science Advances 2018, vol. 4, pp. 1-9CrossRefGoogle Scholar
  30. 30.
    Hang Chen, Jinchuan Jie, Kateryna Svynarenko, Hongjun Ma and Tingju Li: J Mater Res 2014, vol. 29, pp. 1656-1663.CrossRefGoogle Scholar
  31. 31.
    A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia and J. Baruchel: Acta Mater 2013, vol. 61, pp. 1303-1315.CrossRefGoogle Scholar
  32. 32.
    A. Bogno, H. Nguyen-Thi, B. Billia, G. Reinhart, N. Mangelinck-Noël, N. Bergeon, T. Schenk and J. Baruchel: IOP Conference Series: Materials Science and Engineering 2012, vol. 27, p. 012089.CrossRefGoogle Scholar
  33. 33.
    A. Prasad, S. D. McDonald, H. Yasuda, K. Nogita and D. H. StJohn: Journal of Crystal Growth 2015, vol. 430, pp. 122-137.CrossRefGoogle Scholar
  34. 34.
    A. Prasad, E. Liotti, S. D. McDonald, K. Nogita, H. Yasuda, P. S. Grant and D. H. StJohn: IOP Conference Series: Materials Science and Engineering 2015, vol. 84, pp. 012014.CrossRefGoogle Scholar
  35. 35.
    H. J. Huang, D. Shu, Y. N. Fu, J. Wang and B. D. Sun: Ultrasonics Sonochemistry 2014, vol. 21, pp. 1275-1278.CrossRefGoogle Scholar
  36. 36.
    M. D. Kang, H. Y. Gao, D. Shu, J. Wang, F. G. Li, Y. N. Fu, L. S. Ling and B. D. Sun: Mater Trans 2014, vol. 55, pp. 774-778.CrossRefGoogle Scholar
  37. 37.
    H. J. Huang, D. Shu, J. R. Zeng, F. G. Bian, Y. N. Fu, J. Wang and B. D. Sun: Scripta Mater 2015, vol. 106, pp. 21-25.CrossRefGoogle Scholar
  38. 38.
    Y. W. Jia, S. B. Wang, H. J. Huang, D. H. Wang, Y. N. Fu, G. L. Zhu, A. P. Dong, D. F. Du, D. Shu and B. D. Sun: Metall and Mat Trans A 2018, vol. 49, pp. 4771-4784.CrossRefGoogle Scholar
  39. 39.
    H. L. Xie, B. Deng, G. H. Du, Y. N. Fu, R. C. Chen, G. Z. Zhou and Y. Q. Ren: Nuclear Science and Techniques 2015, vol. 26, pp. 6-21.Google Scholar
  40. 40.
    E. Liotti, A. Lui, S. Kumar, Z. Guo, C. Bi, T. Connolley and P. S. Grant: Acta Mater 2016, vol. 121, pp. 384-395.CrossRefGoogle Scholar
  41. 41.
    W. U. Mirihanage, K. V. Falch, I. Snigireva, A. Snigirev, Y. J. Li, L. Arnberg and R. H. Mathiesen: Acta Mater 2014, vol. 81, pp. 241-247.CrossRefGoogle Scholar
  42. 42.
    A. L. Greer, A. Tronche and M. Vandyoussefi: Multiscale Phenomena in Materials-Experiments and Modeling 2000, vol. 578, pp. 425-430.Google Scholar
  43. 43.
    A. Prasad, L. Yuan, P. D. Lee and D. H. StJohn: Acta Mater 2013, vol. 61, pp. 5914-5927.CrossRefGoogle Scholar
  44. 44.
    D. Liu, J. Yu. Hybrid Intell. Syst., 2009, vol. 1, pp. 344-349.Google Scholar
  45. 45.
    Amy J. Clarke, Damien Tourret, Seth D. Imhoff, Paul J. Gibbs, Kamel Fezzaa, Jason C. Cooley, Wah-Keat Lee, Alex Deriy, Brian M. Patterson, Pallas A. Papin, Kester D. Clarke, Robert D. Field and James L. Smith, Adv Eng Mater 2015, vol. 17, pp. 454-459.CrossRefGoogle Scholar
  46. 46.
    D. H. StJohn, A. Prasad, M. A. Easton and M. Qian: Metall and Mat Trans A 2015, vol. 46, pp. 4868-4885.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yiwang Jia
    • 1
  • Donghong Wang
    • 1
  • Yanan Fu
    • 2
  • Anping Dong
    • 1
  • Guoliang Zhu
    • 1
  • Da Shu
    • 1
    Email author
  • Baode Sun
    • 1
    • 3
  1. 1.Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied PhysicsCASShanghaiChina
  3. 3.State Key Lab of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations