Effect of Heat Treatment Combined with an Alternating Magnetic Field on Microstructure and Mechanical Properties of a Ni-Based Superalloy

  • Chuanjun LiEmail author
  • Martin Seyring
  • Xi Li
  • Yunbo Zhong
  • Zhongming RenEmail author
  • Markus Rettenmayr


The effect of a two-step heat treatment including solution and aging heat treatments in an alternating magnetic field (AMF) on microstructure and mechanical properties of the Ni-based superalloy DZ483 was investigated. In the solution heat treatment, the AMF significantly reduced the chemical segregation. In the aging heat treatment, the application of the AMF was found to not only modify the partition ratios of some elements like Al and Ti between the γ′ precipitate and the γ matrix, but also to distinctly accelerate coarsening of γ′ precipitates and to result in a larger mean particle size. Additionally, the morphology of γ′ precipitates gradually evolved from a quasi cube without an AMF to a regular cubic shape in the AMF. Mechanical performance tests showed that hardness and tensile strength of the samples heat treated in the AMF were increased in comparison with those without an AMF. It is shown that the enhanced diffusivity in the AMF is mainly responsible for the change in microsegregation, particle size, and morphology evolution. Furthermore, the AMF promotes the solid solution strengthening and the order strengthening, both of which contribute to the improvement of mechanical properties.



One of the authors (C. Li) is very grateful for support from the Alexander von Humboldt Foundation. This work was also supported by Shanghai Pujiang Talents Program (18PJ1403700), the Natural Science Foundation of China (Grant Numbers 51401116, 51690162, and U1560202), and the United Innovation Program of Shanghai Commercial Aircraft Engine (Grant Nos. AR910, AR911).


  1. 1.
    X. Huang, M.C. Chaturvedi and N.L. Richards, Metall. Mater. Trans. A, 1996, vol. 27, pp. 785-790.CrossRefGoogle Scholar
  2. 2.
    G. E. Fuchs, Mater. Sci. Eng. A, 2001, vol. 300, pp. 52-60.CrossRefGoogle Scholar
  3. 3.
    J. J. Jackson, M. J. Donachie, M. Gell and R. J. Henricks, Metall. Trans. A, 1977, vol. 8, pp. 1615-1620.CrossRefGoogle Scholar
  4. 4.
    P. Caron and T. Khan, Mater. Sci. Eng., 1983, vol. 61, pp. 173-184.CrossRefGoogle Scholar
  5. 5.
    G.E. Fuchs, J. Mater. Eng. Perform., 2002, vol. 11, pp. 19-25.CrossRefGoogle Scholar
  6. 6.
    H. Pang, N. D’Souza, H. Dong, H. Stone and C. Rae, Metall. Mater. Trans. A 2016, vol. 47, pp. 889-906.CrossRefGoogle Scholar
  7. 7.
    K.R. Bain, M.L. Gambone, J.M. Hyzak and M.C. Thomas, Superalloys 1988 1988, pp. 13-22.Google Scholar
  8. 8.
    B. C. Wilson, J. A. Hickman and G. E. Fuchs, JOM, 2003, vol. 55, pp. 35-40.CrossRefGoogle Scholar
  9. 9.
    M. V. Nathal, Metall. Trans. A, 1987, vol. 18, pp. 1961-1970.CrossRefGoogle Scholar
  10. 10.
    J. Andersson, G. P. Sjöberg, L. Viskari and M. Chaturvedi, Mater. Sci. Technol., 2013, vol. 29, pp. 43-53..CrossRefGoogle Scholar
  11. 11.
    D.U. Furrer, R. Shankar and C White, JOM, 2003, vol. 55, pp. 32-34.CrossRefGoogle Scholar
  12. 12.
    H. Pang, L. Zhang, R. Hobbs, H. Stone and C. Rae, Metall. Mater. Trans. A 2012, vol. 43, pp. 3264-3282.CrossRefGoogle Scholar
  13. 13.
    B. Zhang, J. Cui and G. Lu, Mater. Sci. Eng. A, 2003, vol. 355, pp. 325-330.CrossRefGoogle Scholar
  14. 14.
    C. Stelian, Y. Delannoy, Y. Fautrelle and T. Duffar, J. Cryst. Growth, 2004, vol. 266, pp. 207-215.CrossRefGoogle Scholar
  15. 15.
    G.M. Poole, M. Heyen, L. Nastac and N. El-Kaddah, Metall. Mater. Trans. B, 2014, vol. 45, pp. 1834-1841.CrossRefGoogle Scholar
  16. 16.
    B. D. Cullity and C. W. Allen, Acta Metall., 1965, vol. 13, pp. 933-935.CrossRefGoogle Scholar
  17. 17.
    X. Liu, J. Cui, X. Wu, Y. Guo and J. Zhang, Scripta Mater., 2005, vol. 52, pp. 79-82.CrossRefGoogle Scholar
  18. 18.
    X. Hu, L. Peng, S. Qian, P. Fu, W. Ding, Mater. Lett., 2014, vol. 123, pp. 238-241.CrossRefGoogle Scholar
  19. 19.
    X. Liu, J. Cui, E. Wang, and J. He: Mater. Sci. Eng. A, 2005, vol. 402, pp. 1–4.Google Scholar
  20. 20.
    Y. Z. Liu, L. H. Zhan, Q. Q. Ma, Z. Y. Ma and M. H. Huang, J. Alloys Compd., 2015, vol. 647, pp. 644-647.CrossRefGoogle Scholar
  21. 21.
    C. Li, G. Guo, Z. Yuan, W. Xuan, X. Li, Y. Zhong and Z. Ren, J. Alloys Compd. 2017, vol. 720, pp. 272-276.CrossRefGoogle Scholar
  22. 22.
    M. Flemings, D. Poirier, R. Barone, H. Brody, J. Iron Steel Inst. 1970, vol. 208, pp. 371-381.Google Scholar
  23. 23.
    M.N. Gungor, Metall. Trans. A, 1989, vol. 20, pp. 2529-2533.CrossRefGoogle Scholar
  24. 24.
    M. Ganesan, D. Dye, P. Lee, Metall. Mater. Trans. A, 2005, vol. 36, pp. 2191-2204.CrossRefGoogle Scholar
  25. 25.
    M. Seyring, X. Song, M. Rettenmayr, ACS Nano, 2011, vol. 5, pp. 2580-2586.CrossRefGoogle Scholar
  26. 26.
    R. Völkl, U. Glatzel and M. Feller-Kniepmeier, Acta Mater., 1998, vol. 46, pp. 4395-4404.CrossRefGoogle Scholar
  27. 27.
    A. G. Khachaturyan, S. V. Semenovskaya and J. W. Morris, Acta Metall., 1988, vol. 36, pp. 1563-1572.CrossRefGoogle Scholar
  28. 28.
    T. Miyazaki and M. Doi, Mater. Sci. Eng. A, 1989, vol. 110, pp. 175-185.CrossRefGoogle Scholar
  29. 29.
    A.A. Hopgood and J.W. Martin, Mater. Sci. Technol., 1986, vol. 2, pp. 543-546.CrossRefGoogle Scholar
  30. 30.
    J. Lapin, M. Gebura, T. Pelachová and M. Nazmy, Kovove Mater., 2008, vol. 46, pp. 313-322.Google Scholar
  31. 31.
    N. Warnken, D. Ma, A. Drevermann, R. C. Reed, S. G. Fries and I. Steinbach, Acta Mater. 2009, vol. 57, pp. 5862-5875.CrossRefGoogle Scholar
  32. 32.
    R. Schmidt and M. Feller-Kniepmeier, Scripta Metall. 1992, vol. 26, pp. 1919-1924.CrossRefGoogle Scholar
  33. 33.
    F. Pyczak, B. Devrient and H. Mughrabi, Superalloys 2004, 2004, pp. 827-836.CrossRefGoogle Scholar
  34. 34.
    Y. Mishima, S. Ochiai and T. Suzuki, Acta Metall., 1985, vol. 33, pp. 1161-1169.CrossRefGoogle Scholar
  35. 35.
    J.K. Tien and R.P. Gamble, Metall. Trans., 1972, vol. 3, pp. 2157-2162.CrossRefGoogle Scholar
  36. 36.
    T. Murakumo, T. Kobayashi, Y. Koizumi and H. Harada, Acta Mater., 2004, vol. 52, pp. 3737-3744.CrossRefGoogle Scholar
  37. 37.
    R.C. Reed, D.C. Cox and C. Rae, Mater. Sci. Technol. 2007, vol. 23, pp. 893-902.CrossRefGoogle Scholar
  38. 38.
    I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 1961, vol. 19, pp. 35-50.CrossRefGoogle Scholar
  39. 39.
    C. Wagner, Z. Elektrochem, 1961, vol. 65, pp. 581-591.Google Scholar
  40. 40.
    Y. Zhang, N. Gey, C. He, X. Zhao, L. Zuo, C. Esling, Acta Mater., 2004, vol. 52, pp. 3467-3474.CrossRefGoogle Scholar
  41. 41.
    G. Urbain and E. Übelacker, Adv. Phys., 1967, vol. 16, pp. 429-438.CrossRefGoogle Scholar
  42. 42.
    F. R. de Boer, C. J. Schinkel, J. Biesterbos and S. Proost, J. Appl. Phys., 1969, vol. 40, pp. 1049-1055.CrossRefGoogle Scholar
  43. 43.
    A. J. Ardell and V. Ozolins, Nat. Mater., 2005, vol. 4, pp. 309-316.CrossRefGoogle Scholar
  44. 44.
    A. J. Ardell, Interface Sci., 1995, vol. 3, pp. 119-125.CrossRefGoogle Scholar
  45. 45.
    C. Li, S. He, Y. Fan, H. Engelhardt, S. Jia, W. Xuan, X. Li, Y. Zhong, Z. Ren, Appl. Phys. Lett., 2017, vol. 110, pp. 074102.CrossRefGoogle Scholar
  46. 46.
    C. Li, S. He, H. Engelhardt, T. Zhan, W. Xuan, X. Li, Y. Zhong, Z. Ren and M. Rettenmayr, Sci. Rep. 2017, vol. 7, pp. 18085.CrossRefGoogle Scholar
  47. 47.
    M. Karunaratne, D.C. Cox, P.Carter and R.C. Reed, Superalloys 2000, 2000, pp. 263-272.Google Scholar
  48. 48.
    J. Tiley, G.B. Viswanathan, R. Srinivasan, R. Banerjee, D.M. Dimiduk and H.L. Fraser, Acta Mater., 2009, vol. 57, pp. 2538-2549.CrossRefGoogle Scholar
  49. 49.
    J. Lapin, M. Gebura, O. Bajana, T. Pelachová and M. Nazmy, Kovove Mater., 2009, vol. 47, pp. 129-138.Google Scholar
  50. 50.
    A.J. Ardell, Metall. Mater. Trans. B, 1970, vol. 1, pp. 525-534.CrossRefGoogle Scholar
  51. 51.
    T. Miyazaki, H. Imamura, H. Mori and T. Kozakal, J. Mater. Sci., 1981, vol. 16, pp. 1197-1203.CrossRefGoogle Scholar
  52. 52.
    R.A. Ricks, A.J. Porter and R.C. Ecob, Acta Metall., 1983, vol. 31, pp. 43-53.CrossRefGoogle Scholar
  53. 53.
    M.F. Henry, Y.S. Yoo, D.Y. Yoon and J. Choi, Metall. Trans. A, 1993, vol. 24, pp. 1733-1743.CrossRefGoogle Scholar
  54. 54.
    Mats Hillert: Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis, Cambridge University Press, Cambridge, 2007.CrossRefGoogle Scholar
  55. 55.
    J.H. Westbrook, Z. Kristallogr., 1958, vol. 110, pp. 21.CrossRefGoogle Scholar
  56. 56.
    T. Miyazaki, H. Imamura and T. Kozakai, Mater. Sci. Eng., 1982, vol. 54, pp. 9-15.CrossRefGoogle Scholar
  57. 57.
    A. Hazotte, T. Grosdidier and S. Denis, Scripta Mater. 1996, vol. 34, pp. 601-608.CrossRefGoogle Scholar
  58. 58.
    M. Feller-Kniepmeier, T. Link, I. Poschmann, G. Scheunemann-Frerker and C. Schulze, Acta Mater., 1996, vol. 44, pp. 2397-2407.CrossRefGoogle Scholar
  59. 59.
    C.T. Sims, N.S. Stoloff, W.C. Hagel: Superalloys II, John Wiley & Sons, New York, 1987.Google Scholar
  60. 60.
    E. Fleischmann, M.K. Miller, E. Affeldt and U. Glatzel, Acta Mater. 2015, vol. 87, pp. 350-356.CrossRefGoogle Scholar
  61. 61.
    A.J. Ardell, Metall. Trans. A, 1985, vol. 16, pp. 2131-2165.CrossRefGoogle Scholar
  62. 62.
    R. C. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  63. 63.
    B. Reppich, Acta Metall. 1982, vol. 30, pp. 87-94.CrossRefGoogle Scholar
  64. 64.
    R. O. Scattergood and D.J. Bacon, Philos. Mag., 1975, vol. 31, pp. 179-198.CrossRefGoogle Scholar
  65. 65.
    P. Beauchamp, J. Douin and P.Veyssiere, Philos. Mag. A, 1987, vol. 55, pp. 565-581.CrossRefGoogle Scholar
  66. 66.
    S.M. Copley and B.H. Kear, Trans. TMS-AIME 1967, vol. 239, pp. 984-992.Google Scholar
  67. 67.
    H. O’Neill: Hardness measurement of metals and alloys, Chapman & Hall, London, 1967.Google Scholar
  68. 68.
    W. W. Milligan and S. D. Antolovich, Metall. Trans. A 1987, vol. 18, pp. 85-95.CrossRefGoogle Scholar
  69. 69.
    A. Sengupta, S. K. Putatunda, L. Bartosiewicz, J. Hangas, P. J. Nailos, M. Peputapeck and F. E. Alberts, J. Mater. Eng. Perform. 1994, vol. 3, pp. 73-81.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and EngineeringShanghai UniversityShanghaiP.R. China
  2. 2.Otto Schott Institute of Materials ResearchFriedrich-Schiller-Universität-JenaJenaGermany

Personalised recommendations