Advertisement

Effect of Strain Hardened Inner Surface Layers on Stress Corrosion Cracking of Type 316 Stainless Steel in Simulated PWR Primary Water

  • Toshio Yonezawa
  • Masashi Watanabe
  • Atsushi Hashimoto
  • M. D. Olson
  • A. T. DeWald
  • M. R. HillEmail author
Article

Abstract

In this study, the relationship between SCC growth rate and Vickers hardness for Type 316 stainless steel at various temperatures in simulated PWR primary water was investigated. In addition, IGSCC growth measurements were conducted using so-called functionally graded cold-rolled specimens made of Type 316 stainless steel, in simulated PWR primary water. Residual stress measurements were performed using the contour and slitting methods on the functionally graded cold-rolled specimens. The contour method measurements found highly tensile stress (350 MPa) toward the surface of the side with a larger thickness reduction and low-magnitude stress elsewhere. The purpose of these latter specimens was to evaluate the effect of heavily cold-worked layers on the inner surface of components made of Type 316 stainless steel on the possibility that IGSCC could penetrate through the wall thickness. The test data showed that the work-hardened inner surface does not always have a detrimental effect on SCC susceptibility. However, if any surface cracks exist within the work-hardened inner surface layer of any components, the stress at the crack tip becomes very large and SCC easily initiates. Nevertheless, even if IGSCC initiates from a heavily cold-worked layer at the inner surface, IGSCC growth rate in Type 316 stainless steel was found to eventually become negligibly small or arrests in the soft base material.

Notes

Acknowledgments

Part of this study was performed as a part of a collaborative research program that was financially supported by the Hokkaido Electric Power Company, the Kansai Electric Power Company, the Shikoku Electric Power Company, the Kyushu Electric Power Company, and also endowed by Mitsubishi Heavy Industries, Ltd. Some of the test material was supplied by NSSMC (Sumitomo Metal). The remaining part of this study was supported by JSPS KAKENHI Grant Number 25289348. The author would like to acknowledge their financial support.

References

  1. 1.
    P.L. Andresen, T.M. Angeliu, L.M. Young, W.R. Catlin, R.M. Horn: Proc. 10th Int. Conf. Environ. Degrad. Mater. Nuclear Power Syst.—Water Reactors Aug. 5–9, CD-Rom. Lake Tahoe, Nevada. 2001.Google Scholar
  2. 2.
  3. 3.
    T. Shoji, K. Sakaguchi, Z. Lu, S. Hirano, Y. Hasegawa, T. Kobayashi, K. Fujimoto, Y. Nomura: Proc. Int. Symp. FONTEVRAUD 7, 2010, Paper No. A103, CD-ROM.Google Scholar
  4. 4.
    T. Shoji: Proc. 11th Int. Conf. Environ. Degrad. Mater. Nuclear Power Syst. Water React. Aug. 10–14, Stevenson, Washington, 2003. pp. 588–99.Google Scholar
  5. 5.
    P.L. Andresen, P.W. Emigh, M.M. Morra, R.M. Horn: Proc. 11th Int. Conf. Environ. Degrad. Mater. Nuclear Power Syst. Water React. Aug. 10–14, Stevenson, Washington, 2003, pp. 816–33.Google Scholar
  6. 6.
    T. Shoji, G. Li, J. Kwon, S. Matsushima, Z. Lu: Proc. 11th Int. Conf. Environ. Degrad. Mater. Nuclear Power Syst. Water React. Aug. 10–14, Stevenson, Washington, 2003, pp. 834–44.Google Scholar
  7. 7.
    M.L. Castano Martin, M.S. Garcia Redondo, G. Diego Velasco, D. Gomez Briceno: Proc. 11th Int. Conf. Environ. Degrad. Mater. Nuclear Power Syst. Water React. Aug. 10–14, Stevenson, Washington, 2003, pp. 845–51.Google Scholar
  8. 8.
    D. Tice, N. Platts, K. Rigby, J. Stairmand, H. Fairbrother: Proc. 12th Int Conf. Environ. Degrad. Mater. Nuclear Power Syst. Water React. Aug. 14–18, Salt Lake City, Utah, 2005, pp. 1037–1048Google Scholar
  9. 9.
    K. Arioka, T. Yamada, T. Terachi, G. Chiba: Pro. FONTEVRAUD 6, Paper No. A001-T03a, CD-ROM, 2006.Google Scholar
  10. 10.
    L. Tribouilloy, F. Vaillant, J.-M. Olive, M. Puiggali, L. Legras, T. Couvant, J.-M.Boursier, Y. Rouillon, C. Amzallag: Proc. 13th Int Conf. Environ. Degrad. Mater. Nuclear Power Syst. Water React. Aug. 19–23, Whistler, British Columbia, CD-Rom, 2007.Google Scholar
  11. 11.
    M. Ando, K. Nakata, M. Itow, N. Tanaka, M. Koshiishi, R. Obata, Y. Miwa, Y. Kaji, M. Hayakawa: Proc. 13th Int Conf. Environ. Degrad. Mater. Nuclear Power Syst. Water React. Aug. 19–23, Whistler, British Columbia, CD-Rom, 2007.Google Scholar
  12. 12.
    Y. Takeda, Z. Lu, T. Adachi, Q. Peng, J. Kuniya, T. Shoji: Proc. ASME 2010 Pressure Vessels Piping Division/K-PVP Conf. PVP2010, July 18–22, Bellevue, Washington, CD-Rom, 2010.Google Scholar
  13. 13.
    N. Matsubara, T. Kobayashi, K. Fujimoto, Y. Nomura, N. Chigusa, S. Hirano: Proc. Int. Symp. FONTEVRAUD 7, Sept. 26–30, Avignon, France, CD-Rom, 2010.Google Scholar
  14. 14.
    P.Andresen, P.Ford, Material Science and Engineering, (1988), A103, pp.167-184.CrossRefGoogle Scholar
  15. 15.
    R.C.Newman, Corrosion, (1994), Vol. 50, pp.682-686.CrossRefGoogle Scholar
  16. 16.
    P.M. Scott: Proc. 9th Int. Symp. on Environ. Degrad. Mater. in Nucl. Power Syst. Water React. TMS, 1999, pp. 3–14.Google Scholar
  17. 17.
    S. Yaguchi, T.Yonezawa: Trans. Jpn Soc. Mech. Eng. Ser. A, (2012), Vol. 78, Issue 788, pp. 547-563.CrossRefGoogle Scholar
  18. 18.
    W.Kuang, G.Was, C.Miller, M.Kaufman, T.Alarm, B.Gwalani, R.Banerjee, Corrosion Science, (2018), Vol. 130, pp. 126-137.CrossRefGoogle Scholar
  19. 19.
    F.Meng, Z. Lu, T.Shoji, J.Wang, E.H.Han, W.Ke, Corrosion Science, (2011), Vol. 53, pp.2558-2565.CrossRefGoogle Scholar
  20. 20.
    T. Yonezawa, N. Sasaguri, K. Onimura: Proc. 1988 JAIF Int. Conf. Water Chem. Nucl. Power Plants Operat. Exp. New Technol. Manag. April, Tokyo, Japan Atomic Industrial Forum, 1988, pp. 490–96.Google Scholar
  21. 21.
    J.Chen, Z.Lu, Q.Xiao, X.Ru, J.Ma, T.Shoji, Journal of Nuclear Materials, (2017), Vol. 496, pp.313-324.CrossRefGoogle Scholar
  22. 22.
    F. Hosseinzadeh, M. B. Toparli, and P. J. Bouchard, J. Pressure Vessel Technology, (2012), 134, 2CrossRefGoogle Scholar
  23. 23.
    M. Kerr, M. R. Hill, and M. D. Olson, Corrosion, (2013), 69, 975-85CrossRefGoogle Scholar
  24. 24.
    M. R. Hill, M. D. Olson, and A. T. DeWald, J. Pressure Vessel Technology, (2016), 138, 011404Google Scholar
  25. 25.
    United States Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, “Cracking in Pressurizer Safety and Relief Nozzles and in Surge Line Nozzles (IN 2004-11),” 2004.Google Scholar
  26. 26.
    M. D. Olson, A. T. DeWald, M. R. Hill, S. L. McCracken: Proc. ASME 2016 Press. Vessels Piping Division Conf. Vancouver, BC, Canada 2016.Google Scholar
  27. 27.
    G. S. Schajer and M. B. Prime, Journal of Engineering Materials and Technology, (2006), Vol. 128, pp. 375-382.CrossRefGoogle Scholar
  28. 28.
    C. Aydıner and M. B. Prime, J. Eng. Mater. Technol. (2013), 135, 6Google Scholar
  29. 29.
    M. B. Prime, Journal of Engineering Materials and Technology, (2001), Vol. 123, No. 2, pp. 162–168.CrossRefGoogle Scholar
  30. 30.
    M. B. Prime and A. T. DeWald: Practical Residual Stress Measurement Methods, G. S. Schajer, ed., Wiley, West Sussex, UK, 2013, pp. 109–38.Google Scholar
  31. 31.
    M. D. Olson, A. T. DeWald, M. R. Hill, and M. B. Prime, Exp. Mech., (2014), Vol. 55, No. 3, pp. 577–585.CrossRefGoogle Scholar
  32. 32.
    L.Dong, Q.Peng, E.H.Han, W.Ke, L.Wang, Corrosion Science, (2016), Vol. 107, pp.172-181CrossRefGoogle Scholar
  33. 33.
    K. Arioka, T. Yamada, T. Terachi, G. Chiba, Corrosion, (2007), 63, 1114-1123.CrossRefGoogle Scholar
  34. 34.
    K. Fujimoto, T. Iwamura, S. Suzuki and T. Kobayashi, Y. Kikuchi: Proc. Work Shop on Cold Work Iron- Nickel-Base Alloys Exposed High Temp Water Environ, June 4–8, 2007 Tronto, Canada, CD-Rom.Google Scholar
  35. 35.
    X.Zhong, S.C.Bali, T.Shoji, Corrosion Science, (2017), Vol. 118, pp.143-157.CrossRefGoogle Scholar
  36. 36.
    L.Chang, M.G.Burke, F.Scenini, Corrosion Science, (2018), Vol. 138, pp.54-65.CrossRefGoogle Scholar
  37. 37.
    R.P.Matthews, R.D.Knusten, J.E.Westraadt, T.Couvant, Corrosion Science, (2017), Vol. 125, pp.175-183.CrossRefGoogle Scholar
  38. 38.
    S.Wang, Y.Hu, K.Fang, W.Zhang, X.Wang, Corrosion Science, (2017), Vol. 126, pp.104-120.CrossRefGoogle Scholar
  39. 39.
    T.Massoud, V.Maurice, L.H.Klein, A.Seyeux, P.Marcus, Corrosion Science, (2014), Vol. 84, pp.198-203.CrossRefGoogle Scholar
  40. 40.
    X.Xie, D.Ning, B.Chen, S.Lu, J.Sun, Corrosion Science, (2016), Vol. 112, pp. 576-584.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Toshio Yonezawa
    • 1
  • Masashi Watanabe
    • 1
  • Atsushi Hashimoto
    • 2
  • M. D. Olson
    • 3
  • A. T. DeWald
    • 3
  • M. R. Hill
    • 4
    Email author
  1. 1.FRI, NICHe, Tohoku UniversitySendaiJapan
  2. 2.Kobe Material Testing Laboratory Co. LtdKako-gunJapan
  3. 3.Hill Engineering, LLCRancho CordovaUSA
  4. 4.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations