Advertisement

Changes in the Microstructure and Mechanical Properties of Railway Wheel Steels as a Result of the Thermal Load Caused by Shoe Braking

  • Michela FaccoliEmail author
  • Andrea Ghidini
  • Angelo Mazzù
Article
  • 6 Downloads

Abstract

An investigation was carried out to study the effects caused by shoe braking on the microstructure and mechanical properties of ER7, CLASS B, CLASS C, and SANDLOS® wheels as a result of the thermal load. Particular attention was given to cases of exposure to medium and high temperatures, namely from 700 °C to 970 °C, followed by air cooling. Hardness measurements, tensile tests, toughness tests, fatigue crack growth tests, and microstructural observations were carried out on samples extracted from new wheels, with and without heat treatments simulating the microstructural modifications caused by shoe braking. The experiments showed that the hardness, yield strength and ultimate tensile strength of the steels all decrease with the heat-treatment temperature up to 750 °C due to globular pearlite formation. However, after the heat treatment at 970 °C, these properties show a trend inversion, as the globular pearlite no longer appears, while, in some cases, traces of bainite and martensite are observed. On the other hand, the fracture toughness, crack propagation threshold, and rate are not significantly altered by the heat treatments, showing the steels to have a good stability under the thermal loads caused by shoe braking.

Notes

Acknowledgments

The authors wish to thank Paolo Frassi and Bruno Tratta for their support in the experimental activities.

References

  1. 1.
    1. M. Faccoli, A. Ghidini, A. Mazzù: Metall. and Mat. Trans. A, 2018, vol. 49, pp. 4544-4554.CrossRefGoogle Scholar
  2. 2.
    2. I. Hasegawa, S. Uchida: Japan Railway & Transport Review 1999, vol. 20, pp. 52 - 59.Google Scholar
  3. 3.
    C. Cruceanu: Train Braking, Reliability and Safety in Railway, Dr. Xavier Perpinya (Ed.), InTech, 2012, pp. 29–74. ISBN: 978-953-51-0451-3Google Scholar
  4. 4.
    4. G. J. Moyar, D. H. Stone: Wear, 1991, vol. 144, pp. 117 – 38.CrossRefGoogle Scholar
  5. 5.
    5. D. Nikas, J. Ahlström, A. Malakizadi: Wear, 2016, vol. 366-367, pp. 407 – 415.CrossRefGoogle Scholar
  6. 6.
    6. K. Cvetkovski, J. Ahlström, B. Karlsson: Mater. Sci. Technol., 2011, vol. 27, pp. 648 – 654.CrossRefGoogle Scholar
  7. 7.
    7. J. Ahlström, B. Karlsson: Wear, 1999, vol. 232 (1), pp. 1–14.CrossRefGoogle Scholar
  8. 8.
    8. J. Ahlström, B. Karlsson: Wear, 1999, vol. 232 (1), pp. 15–24.CrossRefGoogle Scholar
  9. 9.
    9. S. H. Avner: Introduction to Physical Metallurgy, 2nd ed. India: Tata Mcgraw Hill Pub., 1997.Google Scholar
  10. 10.
    10. J. Jergéus: IMechE J. Rail Rapid Transit, 1998, vol. 212, pp. 69 – 79.Google Scholar
  11. 11.
    11. K. Handa, Y. Kimura and Y. Mishima: Wear, 2010, vol. 268 (1), pp. 50 – 58.CrossRefGoogle Scholar
  12. 12.
    12. O. Orringer, D. E. Geay: Theor. Appl. Fract. Mech., 1995, vol. 23, pp. 55 – 65.CrossRefGoogle Scholar
  13. 13.
    13. T. Vernersson: Proc IMechE, Part F: J. Rail Rapid Transit, 2007, vol. 221(2), pp. 167– 182.Google Scholar
  14. 14.
    14. T. Vernersson: Proc IMechE, Part F: J. Rail Rapid Transit, 2007, vol. 221(4), pp. 429 – 442.Google Scholar
  15. 15.
    15. M. Petersson, T. Vernesson: Wear, 2002, vol. 253, pp. 301- 307.CrossRefGoogle Scholar
  16. 16.
    16. K. L. Johnson: Proc. Inst. Mech. Eng., 1989, vol. 203, pp. 151–63.CrossRefGoogle Scholar
  17. 17.
    17. A. F. Bower: ASME J. Tribol., 1988, 110, pp. 704-11.CrossRefGoogle Scholar
  18. 18.
    K.O. Edel: Querrisse im Radkranz klotzgebremster Güterwagenvollräder, Report, University (FH), Brandenburg, Germany, 1995.Google Scholar
  19. 19.
    Y.C. Li: Analysis of fatigue phenomena in railway rails and wheels, Handbook of fatigue crack propagation in metallic structures, Amsterdam, Elsevier, 1994, pp. 1497–1537.Google Scholar
  20. 20.
    20. M. Faccoli, C. Petrogalli, M. Lancini, A. Ghidini, A. Mazzù: Wear, 2018, vol. 396-397, pp. 146-161.CrossRefGoogle Scholar
  21. 21.
    21. A. Ghidini, M. Faccoli, A. Mazzù, C. Petrogalli: Ingegneria Ferroviaria, 2018, vol. 9, pp. 729-742.Google Scholar
  22. 22.
    22. D. Zeng, L. Lu, Y. Gong, N. Zhang, Y. Gong: Mater. Des., 2016, vol. 92, pp. 998 – 1006.CrossRefGoogle Scholar
  23. 23.
    23. T. Gladman, I. McIvor, F. Pickering: J. Iron Steel Inst., 1972, vol. 210, pp. 916 – 930.Google Scholar
  24. 24.
    24. J. Hyzak and I. Bernstein: Metall. Mater. Trans. A, 1976, vol. 7A (7), pp. 1217 – 1224.CrossRefGoogle Scholar
  25. 25.
    25. O. P. Modi, N. Deshmukh, D. P. Mondal, A. K. Jha, A. H. Yegneswaran and H. K. Khaira: Mater. Charact., 2001, vol. 46 (5), pp. 347 – 352.CrossRefGoogle Scholar
  26. 26.
    26. A. Marder and B. Bramfitt: Metall. Mater. Trans. A, 1976, vol. 7A (2), pp. 365 – 372.CrossRefGoogle Scholar
  27. 27.
    27. D. Zeng, L. Lu, Y. Gong, Y. Zhang, J.Zhang: Wear, 2017, vol. 372-373, pp. 158 – 168.CrossRefGoogle Scholar
  28. 28.
    28. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, T. Maki: Acta Mater., 2007, vol. 55, pp. 5027 – 5038.CrossRefGoogle Scholar
  29. 29.
    29. K. Cvetkovski, J. Ahlström, B. Karlsson: Wear, 2011, vol. 271, pp. 382 – 387.CrossRefGoogle Scholar
  30. 30.
    30. A. Ghidini, M. Diener, J. Schneider: Wheels for freight cars, LRS-Techno Series vol. 3, Lucchini RS, Lovere, Italy, 2010.Google Scholar
  31. 31.
    31. A. Ghidini, M. Diener, J. Schneider: Special wheels for mass transit, LRS-Techno Series vol. 7, Lucchini RS, Lovere, Italy, 2014.Google Scholar
  32. 32.
    32. H. Soares, T. Zucarelli, M. Vieira, M. Freitas, L. Reis: Procedia Structural Integrity, 2016, vol. 1, pp. 265–272.CrossRefGoogle Scholar
  33. 33.
    T Zucarelli, L MoreiraFilho, H Soares, M Vieira, L Reis (2016) Theor. Appl. Fract. Mech. 85:134–139.CrossRefGoogle Scholar
  34. 34.
    34. T. Kato, Y. Yamamoto, H. Kato, S. Dedmon, J. Pilch: Eng. Fract. Mech., 2017, vol. 186, pp. 255–267.CrossRefGoogle Scholar
  35. 35.
    35. M. Diener, A. Ghidini: Mater. Perform. and Charact., 2014, vol. 3 (3), pp. 286 – 304.Google Scholar
  36. 36.
    J. F. Knott: Fundamentals of Fracture Mechanics, Butterworths, London, 1973.Google Scholar
  37. 37.
    37. Y. Park, I. Bernstein: Metall. Trans. A, 1979, vol. 10, pp. 1653–1664.CrossRefGoogle Scholar
  38. 38.
    38. A. Hohenwarter, A. Taylor, R. Stock, R. Pippan: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1609–1618.CrossRefGoogle Scholar
  39. 39.
    39. Z. X. Liu, H. C. Gu: J. Mater. Eng. Perform., 2000, vol. 9, pp. 580 – 584.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Michela Faccoli
    • 1
    Email author
  • Andrea Ghidini
    • 2
  • Angelo Mazzù
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of BresciaBresciaItaly
  2. 2.Lucchini RSLovereItaly

Personalised recommendations