Application of an Equiaxed Grain Growth and Transport Model to Study Macrosegregation in a DC Casting Experiment
Abstract
A simplified three-phase, multiscale macrosegregation model which describes the growth kinetics of equiaxed grains and the coupling between microstructure morphology and the macroscopic transport has been proposed previously. In this paper, the model is validated by comparing the numerical model predictions to the experimental data from DC casting of an AA7050 alloy billet. The morphology of the equiaxed grains has an important influence on the macrosegregation, and we show that the model predictions are accurate when the grain morphology is described correctly.
Nomenclature
- 〈Ci,〉
Average mass concentration of solute i (wt pct)
- 〈Ci*,〉
Average equilibrium mass concentration of solute i (wt pct)
- Co, i
Mean concentration of solute i (wt pct)
- cp
Specific heat (J kg−1 K)
- CD
Drag co-efficient (–)
- d
Diameter of inoculant particle (m)
- D, i
Diffusion coefficient of solute i (m2 s−1)
- g
Volume fraction (–)
- gpack
Packing fraction (–)
- gintern
Internal solid fraction (–)
- \( \vec{\varvec{g}} \)
Acceleration due to gravity (m s−2)
- 〈hl〉l
Averaged liquid enthalpy (J kg−1)
- 〈hs〉s
Averaged solid enthalpy (J kg−1)
- hm
Mixture enthalpy (J kg−1)
- hprimary
Primary cooling heat-transfer coefficient (W m−2 K−1)
- hsecondary
Secondary cooling heat-transfer coefficient (Wm−2 K−1)
- kp, i
Partition coefficient of solute i (–)
- K
Permeability (m2)
- Lf
Latent heat of fusion (J kg−1)
- lkc
Characteristic length for permeability (m)
- ml, i
Liquidus slope of solute i, K (wt pct−1)
- Nnuci
Volumetric number density (m−3)
- Ng
Grain density (m−3)
- pl
Liquid pressure (N m−2)
- P
Perimeter of the ingot (m)
- Qwater
Water flow rate (m3 s−1)
- Renv
Radius of the envelope (m)
- Rs,eq
Radius of the solid grain (m)
- Re
Reynolds number
- Sv
Interfacial area density (m−1)
- Sc
Schmidts number
- t
Time (s)
- T
Temperature (K)
- Twater
Temperature of cooling water (K)
- Tsat
Temperature of boiling water (K)
- Tcast
Casting temperature (K)
- Tliq
Temperature of liquidus (K)
- Tm
Melting temperature of pure Al (K)
- Teut
Eutectic temperature (K)
- ΔT
Undercooling (K)
- ΔTc
Critical undercooling for nucleation (K)
- \(\langle \vec{v}_{\text{l}}\rangle^{\text{l}} \)
Intrinsic average velocity of liquid phase (ms−1)
- \( \langle\vec{v}_{\text{s}}\rangle^{\text{s}} \)
Intrinsic average velocity of solid phase (ms−1)
- \( \vec{V}_{\text{cast}} \)
Casting velocity (ms−1)
- Vtip
Velocity of dendrite tip (ms−1)
- βT
Thermal expansion coefficient (K)
- βC, i
Solutal expansion coefficient of solute i, (pct w−1)
- δi
Diffusion length of solute i (− m)
- δ(t)
Dirac function
- ΓGT
GIBBS–Thomson co-efficient (Km)
- Γ
Growth rate (kg m−3 s−1)
- κ
Thermal conductivity (W m−1 K)
- ρl
Liquid density (kg m−3)
- ρs
Solid density used to account for shrinkage (kg m−3)
- ρl,b
Liquid buoyancy density used to account for Bousinessq approximation (kg m−3)
- ρs,b
Solid buoyancy density used to account for grain motion (kg m−3)
- ρm
Mixture density (kg m−3)
- μl
Liquid dynamic viscosity (Pa s)
Subscripts and Superscripts
- l
Liquid
- s
Solid
- env
Envelope
- e
Extragranular liquid
- d
Intragranular liquid
- s–d
Solid–liquid interface
- e–d
Intra-extra granular liquid interface
- *
equilibrium
- l,b
Liquid buoyancy
- s,b
Solid buoyancy
Notes
Acknowledgments
This study was conducted within the framework of PRIMAL project, of which Hydro Aluminium ASA, Alcoa Norway ANS, Aleris Rolled Products Germany GmbH, Institute of Energy Technology (IFE), NTNU, and SINTEF are the partners. This project is supported by the Research Council of Norway. A.P and M.M acknowledge the support of NOTUR High Performance Computing program. H.C and M.Z. acknowledge the support by the French State through the program “Investment in the future” run by the National Research Agency (ANR) and referenced by ANR-11 LABX-0008-01 (LabEx DAMAS).
References
- 1.A. V. Reddy and N.C. Beckermann: Metall. Mater. Trans. B, 1997, vol. 28, pp. 479–89.Google Scholar
- 2.G. Lesoult, V. Albert, B. Appolaire, H. Combeau, D. Daloz, A. Joly, C. Stomp, G.U. Grün, and P. Jarry: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 285–91.Google Scholar
- 3.K.O. Tveito, A. Pakanati, M. M’Hamdi, H. Combeau, and M. Založnik: Metall. Mater. Trans. A, 2018, vol. 49, pp. 2778–94.Google Scholar
- 4.L. Heyvaert, M. Bedel, M. Založnik, and H. Combeau: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4713–34.Google Scholar
- 5.A. Olmedilla, M. Založnik, B. Rouat, and H. Combeau: Phys. Rev. E., 2018, 1:1–12. https://doi.org/10.1103/physreve.97.012910.Google Scholar
- 6.M. Bedel, K.O. Tveito, M. Založnik, H. Combeau, and M. M’Hamdi: Comput. Mater. Sci., 2015, vol. 102, pp. 95–109.Google Scholar
- 7.M. Rappaz: Int. Mater. Rev., 1989, vol. 34, pp. 93–124.Google Scholar
- 8.J. Ni and C. Beckermann: Metall. Trans. B 1991, vol. 22, pp. 349–61.Google Scholar
- 9.C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754–64.Google Scholar
- 10.M. Wu, A. Ludwig, A. Buhrig-Polaczek, M. Fehlbier, and P.R. Sahm: Int. J. Heat Mass Transf., 2003, vol. 46, pp. 2819–32.Google Scholar
- 11.M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5621–5631.Google Scholar
- 12.M. Wu, A. Fjeld, and A. Ludwig: Comput. Mater. Sci., 2010, vol. 50, pp. 43–58.Google Scholar
- 13.M. Založnik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48, pp. 1–10.Google Scholar
- 14.H. Combeau, M. Založnik, S. Hans, and P.E. Richy: Metall. Mater. Trans. B, 2009, vol. 40, pp. 289–304.Google Scholar
- 15.A. Kumar, M. Založnik, and H. Combeau: Int. J. Adv. Eng. Sci. Appl. Math., 2010, vol. 2, pp. 140–8.Google Scholar
- 16.J. Li, M. Wu, A. Ludwig, and A. Kharicha: Int. J. Heat Mass Transf., 2014, vol. 72, pp. 668–79.Google Scholar
- 17.M. Wu, A. Ludwig, and A. Kharicha: Steel Res. Int., 2018, vol. 89, pp. 1–14.Google Scholar
- 18.T. Jalanti: PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Laussanne, Switzerland, 2000.Google Scholar
- 19.C.J. Vreeman and F.P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 687–704.Google Scholar
- 20.M. Založnik and B. Šarler: Model. Cast. Weld. Adv. Solidif. Process. XI, 2006, pp. 243–50.Google Scholar
- 21.L. Zhang, D.G. Eskin, A. Miroux, T. Subroto, and L. Katgerman: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 33, pp. 1–8.Google Scholar
- 22.Q. Du, D.G. Eskin, and L. Katgerman: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, vol. 38, pp. 180–89.Google Scholar
- 23.A. V. Reddy and C. Beckermann: Mater. Process. Comput. Age II, 1995, pp. 89–102.Google Scholar
- 24.M. Založnik, A. Kumar, H. Combeau, M. Bedel, P. Jarry, and E. Waz: Adv. Eng. Mater., 2011, vol. 13, pp. 570–80.Google Scholar
- 25.A. Hakonsen, D. Mortensen, S. Benum, and H.E. Vatne: in Light Metals, TMS, Warrendale, PA, 1999, pp. 821–7.Google Scholar
- 26.M. Bedel, L. Heyvaert, M. Založnik, H. Combeau, D. Daloz, and G. Lesoult: IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 84 (1), pp. 1–8.Google Scholar
- 27.H. Combeau, M. Založnik, and M. Bedel: Jom, 2016, vol. 68, pp. 2198–206.Google Scholar
- 28.L. Zhang, D.G. Eskin, A. Miroux, T. Subroto, and L. Katgerman: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1–9.Google Scholar
- 29.A.L. Greer, A.M. Bunn, A. Tronche, P. V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.Google Scholar
- 30.M. Rappaz and P.H. Thévoz: Acta Metall., 1987, vol. 35, pp. 2929–33.Google Scholar
- 31.M. Rappaz and W.J. Boettinger: Acta Mater., 1999, vol. 47, pp. 3205–19.Google Scholar
- 32.D. Weckman and P. Niessen: Metall. Trans. B, 1982, vol. 13, pp. 593–602.Google Scholar
- 33.A.L. Dons, E.K. Jensen, Y. Langsrud, E. Trømborg, and S. Brusethaug: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2135–2146.Google Scholar
- 34.Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F.Y. Xie: Mater. Sci. Eng. A, 2003, vol. 363, pp. 140–51.Google Scholar
- 35.C.J. Vreeman, M.J.M. Krane, and F.P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 677–86.Google Scholar
- 36.I. Vušanović and M.J.M. Krane: Mater. Sci. Eng. 1:1-12 (2011). doi:10.1088/1757-899x/27/1/012069.Google Scholar
- 37.A. Pakanati, K.O. Tveito, M. M’Hamdi, H. Combeau, and M. Založnik: in Light Metals 2018. TMS 2018. The Minerals, Metals & Materials Series, Martin O. ed., Springer, Cham, 2018, pp. 1089–96.Google Scholar
- 38.A. Tronche: PhD thesis, University of Cambridge, Cambridge, England, 2000.Google Scholar
- 39.M. Založnik, S. Xin, and B. Šarler: Int. J. Numer., 2008, vol. 18, pp. 308–324.Google Scholar
- 40.C.Y. Wang and C. Beckermann: Metall. Trans. A, 1993, vol. 24, pp. 2787–802.Google Scholar
- 41.Ø. Nielsen, B. Appolaire, H. Combeau, and A. Mo: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2049–60.Google Scholar
- 42.M.A. Martorano, C. Beckermann, and C.A. Gandin: Metall. Mater. Trans., 2003, vol. 32, pp. 1657–74.Google Scholar
- 43.B. Appolaire, H. Combeau, and G. Lesoult: Mater. Sci. Eng. A, 2008, vol. 487, pp. 33–45.Google Scholar
- 44.M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5632–44.Google Scholar
- 45.M. Bedel: PhD theses, Université de Lorraine, Nancy, France, 2014.Google Scholar
- 46.M. Torabi Rad, M. Založnik, H. Combeau, and C. Beckermann: Materialia, 2019, article in press.Google Scholar