Microstructural Peculiarities of Al-Rich Al-La-Ni-Fe Alloys

  • A. L. VasilievEmail author
  • N. D. Bakhteeva
  • M. Yu. Presniakov
  • S. Lopatin
  • N. N. Kolobylina
  • A. G. Ivanova
  • E. V. Todorova


The results of a comprehensive microstructural study of the ternary and quaternary phases in air-cast Al85Ni11−xFexLa4 (where x = 2 and 4 at. pct) polycrystalline alloys by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray microanalysis, and X-ray diffraction are presented. It was found that these alloys contain several phases, namely, fcc-Al, Al11La3, Al3Ni1−xFex, Al9Ni2−xFex, Al8Fe2−xNixLa, and Al3.2Fe1−xNix, in the form of δ-layers in Al8Fe2−xNixLa particles. A high density of other defects in the quaternary Al8Fe2−xNixLa particles was found, and the formation of these defects could be caused by the dendritic type of growth of this phase. The crystal structures of all these defects were revealed by high-resolution scanning transmission electron microscopy together with atomic-resolution energy-dispersive X-ray microanalysis. The thermal stability of the ternary and quaternary phases was also studied. The Al8Fe2−xNixLa phase is metastable and undergoes an irreversible transformation: Al8Fe2−xNixLa → Al9Ni2−xFex + Al11La3. Based on these data, a sequence of solid-phase reactions in these alloys during cooling and heating is proposed.



The alloy formation and OM work was carried out under state Assignment No 007-00129-18-00 (IMET RAS). The XRD and EM experiments were supported by the Ministry of Science and Higher Education within the state assignment FSRC “Crystallography and Photonics” RAS. The XRD analysis was performed using the equipment of the Shared Research Center FSRC “Crystallography and Photonics” RAS.


  1. 1.
    Inoue, A., Ohtera, K., Tsai, A.-P., Masumoto, T.: Jpn. J. Appl. Phys., 1988, vol. 27, pp. L280–82.CrossRefGoogle Scholar
  2. 2.
    Inoue, A., Ohtera, K., Tsai, A.-P., Kimura, H. Masumoto, T.: Jpn. J. Appl. Phys., 1988, vol. 27, pp. L1579–82.CrossRefGoogle Scholar
  3. 3.
    Y. He, S.J. Poon, and G.J. Shiflet: Science, 1988, vol. 241, pp. 1640–42.CrossRefGoogle Scholar
  4. 4.
    M.T. Kim, Y. Hwan, I. Akihisha: Mater. Trans. JIM, 1990, vol. 31, pp. 747–49.CrossRefGoogle Scholar
  5. 5.
    5Y. He, G.M. Dougherty, G.J. Shiflet, and S.J. Poon: Acta Metall. Mater., 1993, vol. 41, pp. 337–43.CrossRefGoogle Scholar
  6. 6.
    6T. Mika, M. Karolus, G. Haneczok, L. Bednarska, E. Łagiewka, and B. Kotur: J. Non. Cryst. Solids, 2008, vol. 354, pp. 3099–106.CrossRefGoogle Scholar
  7. 7.
    M.T. Kim, Y. Hwan, I. Akihisha: Mater. Trans. JIM, 1991, vol. 32, pp. 331–38.CrossRefGoogle Scholar
  8. 8.
    H. Chen, Y. He, G.J. Shiflet, and S.J. Poon: Scr. Metall. Mater., 1991, vol. 25, pp. 1421–24.CrossRefGoogle Scholar
  9. 9.
    R. Raggio, G. Borzone, and R. Ferro: Intermetallics, 2000, vol. 8, pp. 247–57.CrossRefGoogle Scholar
  10. 10.
    A.L. Vasiliev, M. Aindow, M.J. Blackburn, and T.J. Watson: Intermetallics, 2004, vol. 12, pp. 349–62.CrossRefGoogle Scholar
  11. 11.
    A.L. Vasiliev, M. Aindow, M.J. Blackburn, and T.J. Watson: Intermetallics, 2005, vol. 13, pp. 741–8.CrossRefGoogle Scholar
  12. 12.
    T. Mika and B. Kotur: Chem. Met. Alloys, 2010, vol. 3, pp. 208–19.Google Scholar
  13. 13.
    W. Tang, J. Liang, G. Rao, Y. Guo, and Y. Zhao: J. Alloys Compd., 1995, vol. 218, pp. 127–30.CrossRefGoogle Scholar
  14. 14.
    V. Raghavan: J. Phase Equilibria, 2001, vol. 22, pp. 1995–6.Google Scholar
  15. 15.
    T. Godecke, S. Wensheng, L. Reinhard, and L. Ke: Zeitschrift für Met., 2001, vol. 92, pp. 717–22.Google Scholar
  16. 16.
    V. Raghavan: J. Phase Equilibria Diffus., 2006, vol. 27, p. 392.Google Scholar
  17. 17.
    V.G. Rivlin and G. V. Raynor: Int. Met. Rev., 1980, vol. 3, pp. 79–93.Google Scholar
  18. 18.
    18G. V. Raynor and V.G. Rivlin: Phase Equilibria in Iron Ternary Alloys : A Critical Assessment of the Experimental Literature., Institute., Institute of Metals North American Publications Center, London, 1988.Google Scholar
  19. 19.
    19M. Khaidar, C.H. Allibert, and J. Driole: Zeitschrift für Met., 1982, vol. 73, pp. 432–8.Google Scholar
  20. 20.
    P. Budberg, A. Prince, G. Cacciamani, R. Ferro, B. Grushko, P. Perrot, and R. Schmid-fetzer: in Ternary Alloys, G.E. G.Petzow, ed., vol. 1, VCH., VCH, Weinheim, 2004, pp. 329–58.Google Scholar
  21. 21.
    21V. Raghavan: J. Phase Equilibria Diffus., 2006, vol. 27, pp. 489–90.CrossRefGoogle Scholar
  22. 22.
    22L. Eleno, K. Frisk, and A. Schneider: Intermetallics, 2006, vol. 14, pp. 1276–90.CrossRefGoogle Scholar
  23. 23.
    I. Chumak, K.W. Richter, and H. Ipser: Intermetallics, 2007, vol. 15, pp. 1416–24.CrossRefGoogle Scholar
  24. 24.
    24L. Zhang and Y. Du: Comput. Coupling Phase Diagrams Thermochem., 2007, vol. 31, pp. 529–40.CrossRefGoogle Scholar
  25. 25.
    25L. Zhang, Y. Du, H. Xu, C. Tang, H. Chen, and W. Zhang: J. Alloys Compd., 2008, vol. 454, pp. 129–35.CrossRefGoogle Scholar
  26. 26.
    26L. Zhang, J. Wang, Y. Du, R. Hu, P. Nash, X.G. Lu, and C. Jiang: Acta Mater., 2009, vol. 57, pp. 5324–41.CrossRefGoogle Scholar
  27. 27.
    A.J. Bradley and A. Taylor: Philos. Mag. J. Sci., 1937, vol. 23, pp. 1049–67.CrossRefGoogle Scholar
  28. 28.
    A. Yamamoto and H. Tsubakino: Scr. Mater., 1997, vol. 37, pp. 1721–5.CrossRefGoogle Scholar
  29. 29.
    V. I. Dybkov: J. Mater. Sci., 2000, vol. 5, pp. 1729–36.CrossRefGoogle Scholar
  30. 30.
    U. Burkhardt, Y. Grin, M. Ellner, and K. Peters: Acta Crystallogr. Sect. B Struct. Sci., 1994, vol. 50, pp. 313–6.CrossRefGoogle Scholar
  31. 31.
    K. Schubert, U. Roesler, M. Kluge, K. Anderko, and L. Harle: Naturwissenschaften, 1953, vol. 40, p. 437.Google Scholar
  32. 32.
    A.J. Bradley and C.. S. Cheng: Z. Krist., 1938, vol. 99, pp. 480–7.Google Scholar
  33. 33.
    33C.J. Simensen and R. Vellasamy: Zeitschrift für Met., 1977, vol. 68, pp. 428–31.Google Scholar
  34. 34.
    34H.E. Hollingworth, G.R. Frank, and R.E. Willett: Trans. Met. Soc. AIME, 1962, vol. 224., p. 188.Google Scholar
  35. 35.
    35L.K. Walford: Acta Crystallogr., 1965, vol. 18, pp. 287–91.CrossRefGoogle Scholar
  36. 36.
    A.J. Bradley and A. Taylor: Proc. R Soc. A Math. Phys. Sci., 1938, vol. 166, pp. 353–75.Google Scholar
  37. 37.
    37Schrader, A. and H. Hanemann: Aluminium, 1943, vol. 25, pp. 339–42.Google Scholar
  38. 38.
    L.F. Mondolfo: No Title, Butterworth, London-Boston, 1976.Google Scholar
  39. 39.
    39V. Raghavan: J. Phase Equilibria, 1994, vol. 15, pp. 411–3.CrossRefGoogle Scholar
  40. 40.
    40A.J. Bradley and A. Taylor: J. Inst. Met, 1940, vol. 66, pp. 53–65.Google Scholar
  41. 41.
    41M. Ellner and T.Z. Rohrer: Zeitschrift für Met., 1990, vol. 81, pp. 847–9.Google Scholar
  42. 42.
    A. Tsai, A. Inoue, and T. Masumoto: Mater. Trans. JIM, 1989, vol. 30, pp. 463-473.CrossRefGoogle Scholar
  43. 43.
    U. Lemmerz, B. Grushko, C. Freiburg, and M. Jansen: Phil Mag Lett, 1994, vol. 69, pp. 141–6.CrossRefGoogle Scholar
  44. 44.
    B. Grushko and K. Urban: Philos. Mag. Part B, 1994, vol. 70, pp. 1063–75.CrossRefGoogle Scholar
  45. 45.
    45M. Döblinger, R. Wittmann, and B. Grushko: J. Alloys Compd., 2003, vol. 360, pp. 162–7.CrossRefGoogle Scholar
  46. 46.
    46Z.H. Huang, J.F. Li, Q.L. Rao, and Y.H. Zhou: Intermetallics, 2007, vol. 15, pp. 1139–46.CrossRefGoogle Scholar
  47. 47.
    Y.S. Kim, J.S. Nguen, O.T.H Choi, P.P. Kim, J.C. Kwon: Chem. Sustain. Dev., 2007, vol. 15, pp. 175–79.Google Scholar
  48. 48.
    48A.H. Gomes de Mesquita and K.H.J. Buschow: Acta Crystallogr., 1967, vol. 22, pp. 497–501.CrossRefGoogle Scholar
  49. 49.
    49K.H.J. Buschow: Philips Res. Rep., 1965, vol. 20, pp. 337–48.Google Scholar
  50. 50.
    50K.A. Gschneidner and F.W. Calderwood: Bull. Alloy Phase Diagrams, 1988, vol. 9, pp. 686–9.CrossRefGoogle Scholar
  51. 51.
    51I. Tamura, T. Mizushima, Y. Isikawa, and J. Sakurai: J. Magn. Magn. Mater., 2000, vol. 220, pp. 31–8.CrossRefGoogle Scholar
  52. 52.
    V.M.T. Thiede, T. Ebel and J. Wolfgang: J. Mater. Chem., 1998, vol. 8, pp. 125–30.CrossRefGoogle Scholar
  53. 53.
    A.L. Vasilev, A.G. Ivanova, N.D. Bakhteeva, N.N. Kolobylina, A.S. Orekhov, M.Y. Presnyakov, and E. V. Todorova: Crystallogr. Reports, 2015, vol. 60, pp. 23–29.CrossRefGoogle Scholar
  54. 54.
    M.B. Manyako, I.N. Stets, I.V. Kivach, O.S. Zarechnyuk, and T.I. Janson: Dopovidi Akad. Nauk Ukr. RSR Seriya B Geol. Khimichni ta Biol. Nauk., 1983, vol. 1983, pp. 39–41.Google Scholar
  55. 55.
    55A. Hull: Phys. Rev., 1917, vol. 10, pp. 661–96.CrossRefGoogle Scholar
  56. 56.
    56P.J. Black: Acta Crystallogr., 1955, vol. 8, pp. 43–8.CrossRefGoogle Scholar
  57. 57.
    J. Grin, U. Burkhardt, M. Ellner, and K. Peters: Zeitschrift für Krist., 1994, vol. 209, pp. 479–87.Google Scholar
  58. 58.
    58K. Sugiyama, T. Obata, and K. Hiraga: Mater. Trans., 2012, vol. 8, pp. 1357–62.CrossRefGoogle Scholar
  59. 59.
    59I.I. Zalutskii and P.I. Kripyakevich: Kristallografiya, 1967, vol. 12, pp. 394–7.Google Scholar
  60. 60.
    60H. Nowotny: Zeitschrift fuer Met., 1942, vol. 34, pp. 22–4.Google Scholar
  61. 61.
    I.I. Zalutskii and P.I. Kripyakevich: Dopovidi Akad. Nauk Ukr. RSR, Seriya A Fiz. ta Mat. Nauk., 1967, vol. 1967, pp. 362–65.Google Scholar
  62. 62.
    62V.M.. Thiede, W. Jeitschko, S. Niemann, and T. Ebel: J. Alloys Compd., 1998, vol. 267, pp. 23–31.CrossRefGoogle Scholar
  63. 63.
    63D. Gout, E. Benbow, O. Gourdon, and G.J. Miller: Inorg. Chem., 2004, vol. 43, pp. 86–90.CrossRefGoogle Scholar
  64. 64.
    64P.A. Stadelmann: Ultramicroscopy, 1987, vol. 21, pp. 131–45.CrossRefGoogle Scholar
  65. 65.
    F.C. Campbell: Phase Diagrams Understanding the Basics, ASM international, Almere, 2012.Google Scholar
  66. 66.
    M. Zurbuchen, W. Tian, X. Pan, D. Fong, S.K. Streiffer, M.E. Hawley, J. Lettieri, Y. Jia, G. Asayama, S.J. Fulk, D.J. Comstock, and S. Knapp: J. Mater. Res., 2007, vol. 22, pp. 1439–71.CrossRefGoogle Scholar
  67. 67.
    67A.L. Vasiliev, G. VanTendeloo, S. Amelinckx, Y. Boikov, E. Olsson, and Z.G. Ivanov: Phys. C-Superconductivity, 1995, vol. 244, pp. 373–88.CrossRefGoogle Scholar
  68. 68.
    68C.L. Jia, L. Houben, and K. Urban: Philos. Mag. Lett., 2006, vol. 86, pp. 683–90.CrossRefGoogle Scholar
  69. 69.
    69A.M.B. Douglas: Acta Crystallogr., 1950, vol. 3, pp. 19–24.CrossRefGoogle Scholar
  70. 70.
    N.D. Bakhteeva, E. V. Todorova, N.N. Kolobylina, A.L. Vasilev, and V.P. Sirotinkin: Russ. Metall., 2013, vol. 2013, pp. 206–16.CrossRefGoogle Scholar
  71. 71.
    M.E. Drits, E.S. Kadaner, and N.D. Shoa: Russ. Met., 1969, vol. 1, p. 113–117.Google Scholar
  72. 72.
    G. Ghosh: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series., 2005.Google Scholar
  73. 73.
    A. Kelly and K.M. Knowles: Crystallography and Crystall Defects, Wiley, Hoboken, 2012.CrossRefGoogle Scholar
  74. 74.
    W.A. Tiller: J. Appl. Phys., 1958, vol. 29, pp. 611–8.CrossRefGoogle Scholar
  75. 75.
    V. Voort and W. Baldwin: in ASM Handbook Volume 9: Metallography and Microstructures, G.F.V. Voort, ed., ASM International, Novelty, OH, 2004, pp. 152–64.Google Scholar
  76. 76.
    76R.P. Elliott and F.A. Shunk: Bull. Alloy Phase Diagrams, 1981, vol. 2, pp. 219–21.CrossRefGoogle Scholar
  77. 77.
    U.R. Kattner: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Metals Park, 1990.Google Scholar
  78. 78.
    78M. Singleton, J. Murray, and P. Nash: Binary Alloy Phase Diagrams., 2nd edn., ASM International, Metals Park, OH (USA), 1990.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • A. L. Vasiliev
    • 1
    • 2
    • 5
    Email author
  • N. D. Bakhteeva
    • 3
  • M. Yu. Presniakov
    • 1
  • S. Lopatin
    • 4
  • N. N. Kolobylina
    • 1
  • A. G. Ivanova
    • 2
  • E. V. Todorova
    • 3
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics”, RASMoscowRussia
  3. 3.Baikov Institute of Metallurgy and Materials Science, RASMoscowRussia
  4. 4.King Abdullah University of Science and Technology (KAUST)Core LabsThuwalSaudi Arabia
  5. 5.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussia

Personalised recommendations