Advertisement

Development of Accident-Tolerant FeCrAl Steels Containing Al2O3 Particles by Means of Internal Al Oxidation

  • Hiroki ShibataEmail author
  • Shigeharu Ukai
  • Naoko H. Oono
  • Shigenari Hayashi
  • Kan Sakamoto
  • Mutsumi Hirai
Article
  • 35 Downloads

Abstract

FeCrAl ferritic steels containing dispersed Al2O3 particles instead of Y2O3 or Ce2O3 particles were developed for accident-tolerant fuel cladding in light-water reactors. Forcible addition of only oxygen through mechanical alloying can create Al2O3 particles by precipitation during annealing above 973 K. The oxygen content was controlled to use oxidation of internal aluminum to form Al2O3 particles and increase the number density of Al2O3 particles with an average diameter of around 40 nm. The size and number density of Al2O3 particles are significantly affected by lattice misfit, and thus interfacial energy between Al2O3 particles and the matrix, and by aluminum solubility into the ferrite matrix. The estimated Al2O3 particle strengthening stress is consistent with measured tensile stress at 973 K. Both stresses are slightly improved with increasing oxygen content, but are half the level of that in steel strengthened by Ce2O3 and CeAlO3 particles.

Notes

Acknowledgments

This work is supported by Grant-in-Aid for Scientific Research (B), 16H04529, Japan Society for the Promotion of Science (JSPS). The authors would like to thank the laboratory of Nano-Micro Material-Analysis in Hokkaido University for the utilizing of XRD, FIB and TEM.

References

  1. 1.
    K. Terrani, J. Nucl. Mater., 2014, vol. 448, pp. 420-435.CrossRefGoogle Scholar
  2. 2.
    J.J. Powers, N.M. George, G.I. Maldonado, and A. Worrall: Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs, ORNL/TM-2015/415, Oak Ridge National Laboratory, 2015.Google Scholar
  3. 3.
    A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ohnuki, T. Fujisawa, and T.F. Abe, J Nucl. Mater., 2011, vol. 417, pp.176-179.CrossRefGoogle Scholar
  4. 4.
    Y. Yano, T. Tanno, H. Oka, S. Ohtsuka, T. Inoue, S. Kato, T. Furukawa, T. Uwaba, T. Kaito, S. Ukai, N. Oono, A. Kimura, S. Hayashi, and T. Torimaru, J Nucl. Mater., 2017, vol. 487, pp. 229-237.CrossRefGoogle Scholar
  5. 5.
    Y. Shizukawa, S. Ukai, N. Oono, S. Hayashi, S. Ohtsuka, T. Torimaru, and A. Kimura, Proc. on Advanced High-Temperature Materials Technology for Sustainable and Reliable Power Engineering (1213HiMST-2015) 29 June-3 July (2015) Sapporo, Japan.Google Scholar
  6. 6.
    S. Ukai, N. Oono, T. Kaito, T. Torimaru, A. Kimura, and S. Hayashi, in: The Ninth Pacific Rim International Conference on advanced Materials and Processing (PRICM9), The Japan Institute of Metals and Materials, 2016.Google Scholar
  7. 7.
    S. Ukai, N. Oono, K. Sakamoto, T. Tirimaru, T. Kaito, A. Kimura, and S. Hayashi, in Proc. of ICAPP 2017, Fukui and Kyoto (Japan), April 24–28 (2017).Google Scholar
  8. 8.
    H. Shibata, S. Ukai, N.H. Oono, K. Sakamoto, and M. Hirai, Jour. Nucl. Mater., 2018, vol. 502, pp. 228-235.CrossRefGoogle Scholar
  9. 9.
    K. Shobu, Calphad, 2009, Vol. 33, pp. 279-287.CrossRefGoogle Scholar
  10. 10.
    J. Ribis, and Y. de Carlan, Acta Materialia, 2012, vol. 60, pp. 238-252.CrossRefGoogle Scholar
  11. 11.
    L. Ragnaesson, D. Sichen (2010) Process Metall. 1(1):40-47.Google Scholar
  12. 12.
    J. Ribis et al., Journal of nuclear Materials, 2013, vol. 442, pp. S101-S105CrossRefGoogle Scholar
  13. 13.
    GR Odette (2018) Scripta Mater. 143:142-48.CrossRefGoogle Scholar
  14. 14.
    L. Barnard et al., Acta Materialia, 2015, vol. 91, pp. 340-354.CrossRefGoogle Scholar
  15. 15.
    C. Kenel et al., Intermetallics, 2017, vol. 90, pp. 63-73.CrossRefGoogle Scholar
  16. 16.
    Sawada H., Mater Res Bull, 1994, vol. 29, pp. 127–133.CrossRefGoogle Scholar
  17. 17.
    T. Ohashi, T. Hiromoto, H. Fujii, Y. Nuri, and K. Asanno, Tetsu-to-Hagane, 1976, No. 6.Google Scholar
  18. 18.
    B.L. Bramfitt, 1970, Metall. Trans. 1(1):1987-1995.CrossRefGoogle Scholar
  19. 19.
    NIMS AtomWork Database: Y.S. Kim, Acta Cryst, 1968, pp. 295–29.Google Scholar
  20. 20.
    Naoko Oono, Q.X. Tang, and Shigeharu Ukai, Materials Science & Engineering A, 2016, vol. 649, pp. 250-253.CrossRefGoogle Scholar
  21. 21.
    M. Palm (2009) Int. J. Mater. Res. 100 (3):277-287.CrossRefGoogle Scholar
  22. 22.
    Y.C. Chuang, C.H. Wu, and Z.B. Shao, Journal of the Less Common Metals, 1987, vol. 136, pp.147-153.CrossRefGoogle Scholar
  23. 23.
    R.O. Scattergood, and D.J. Bacon, Philosophical Magazine A, 1975, vol. 31, pp.179-198.CrossRefGoogle Scholar
  24. 24.
    S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, and H. Nakashima, J. Nucl. Sci. Technol., 2002, vol. 39, pp. 872-879.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Hiroki Shibata
    • 1
    Email author
  • Shigeharu Ukai
    • 2
  • Naoko H. Oono
    • 2
  • Shigenari Hayashi
    • 2
  • Kan Sakamoto
    • 3
  • Mutsumi Hirai
    • 3
  1. 1.Graduate School of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Faculty of EngineeringHokkaido UniversitySapporoJapan
  3. 3.Nippon Nuclear Fuel Development Co., LTDIbaraki-kenJapan

Personalised recommendations