Effect of Zr Addition on Microstructure, Hardness and Oxidation Behavior of Arc-Melted and Spark Plasma Sintered Multiphase Mo-Si-B Alloys

  • N. K. Kumar
  • J. Das
  • R. MitraEmail author


The effect of 2 at. pct Zr addition at the expense of Mo on microstructural evolution, hardness as well as non-isothermal and isothermal oxidation behavior of arc-melted or spark-plasma sintered (SPS) 76Mo14Si10B and 79.5Mo12Si8.5B alloys, has been examined. The microstructures of both arc-melted and SPS alloys have exhibited α-Mo, Mo3Si and Mo5SiB2.These alloys, particularly those processed by SPS have also shown dispersion of SiO2 particles, and these are largely replaced by ZrO2 at interphase boundaries in the Zr-containing alloys. Alloying with Zr or processing by SPS has led to refinement of microstructure, which in turn has caused significant hardness enhancement. During heating from ambient temperature to 1250 °C in air inside a thermogravimetric analyzer, initial mass gain at ≈ 800 °C is found to be followed by rapid mass loss. Isothermal oxidation studies in the temperature range of 800 °C–1300 °C have shown initial mass loss caused by vaporization of MoO3 being followed by a regime of no change in mass. Besides B2O3-SiO2, MoO2 and Mo have been found in the oxide scales of all alloys, whereas ZrO2 and ZrSiO4 have been found along with Zr(MoO4)2 in case of Zr-containing alloys. Reduced mass loss is observed in Zr-containing alloys with the maximum improvement being observed for exposure at 800 °C, not only due to higher volume fractions of Mo3Si and Mo5SiB2 contributing to formation of B2O3-SiO2, but also because MoO3 is partly consumed to form non-volatile Zr(MoO4)2. Furthermore, refinement of microstructures obtained by Zr addition or processing by SPS increases the net area covered by interphase interfaces, which provides short circuit paths for diffusion and enhances the kinetics of formation of protective B2O3-SiO2 scale.



The authors would like to thank Mr. Mithun Das, Mr. Nirmal Das, and Mr. Srikrishna Maity of the Central Research Facility, IIT Kharagpur for technical assistance. The financial support provided by DRDO (ERIP/ER/1200425/M/01/1482), New Delhi, Government of India, is gratefully acknowledged.


  1. 1.
    [1] M.K. Meyer, M.J. Kramer, and M. Akinc: Intermetallics, 1996, vol. 4, pp. 273–281.CrossRefGoogle Scholar
  2. 2.
    [2] J.H. Schneibel, M.J. Kramer, Ö. Ünal, and R.N. Wright: Intermetallics, 2001, vol. 9, pp. 25–31.CrossRefGoogle Scholar
  3. 3.
    [3] M.G. Mendiratta, T.A. Parthasarathy, and D.M. Dimiduk: Intermetallics, 2002, vol. 10, pp. 225–232.CrossRefGoogle Scholar
  4. 4.
    [4] V. Supatarawanich, D.R. Johnson, and C.T. Liu: Intermetallics, 2004, vol. 12, pp. 721–725.CrossRefGoogle Scholar
  5. 5.
    [5] N. Sekido, R. Sakidja, and J.H. Perepezko: Intermetallics, 2007, vol. 15, pp. 1268–1276.CrossRefGoogle Scholar
  6. 6.
    [6] T. Karahana, G. Ouyang, P.K. Ray, M.J. Kramer, and M. Akinc: Intermetallics, 2017, vol. 87, pp. 38–44.CrossRefGoogle Scholar
  7. 7.
    [7] N.K. Kumar, B. Roy, R. Mitra, and J. Das: Intermetallics, 2017, vol. 88, pp. 28–30.CrossRefGoogle Scholar
  8. 8.
    [8] J. Das, B. Roy, N.K. Kumar, and R. Mitra: Intermetallics, 2017, vol. 83, pp. 101–109.CrossRefGoogle Scholar
  9. 9.
    [9] H. Long, S. Mao, Y. Liu, Z. Zhang, and X. Han: J. Alloys Compd., 2018, vol. 743, pp. 203–220.CrossRefGoogle Scholar
  10. 10.
    [10] A. Suzuki, H. Inui, and T.M. Pollock: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 345–368CrossRefGoogle Scholar
  11. 11.
    [11] M. Krüger, P. Jain, K.S. Kumar, and M. Heilmaier: Intermetallics, 2014, vol. 48 pp. 10–18.CrossRefGoogle Scholar
  12. 12.
    [12] B. Li, G.-j. Zhang, F. Jiang, S. Ren, G. Liu, and J. Sun: J. of Alloys and Comp., 2014, vol. 609, pp. 80–85.CrossRefGoogle Scholar
  13. 13.
    [13] C. Hochmuth, D. Schliephake, R. Völkl, M. Heilmaier, and U. Glatzel: Intermetallics, 2014, vol. 48, pp. 3–9.CrossRefGoogle Scholar
  14. 14.
    [14] P. Jain, and K.S. Kumar: Acta Mater., 2010, vol. 58, pp. 2124–2142;CrossRefGoogle Scholar
  15. 15.
    [15] P. Jain, and K.S. Kumar: Scr. Mater., 2010, vol. 62, pp. 1–4.CrossRefGoogle Scholar
  16. 16.
    [16] G. Zhang, W. He, B. Li, Y. Zha, and J. Sun: J. Alloys Compd., 2013, vol. 577, pp. 217–221.CrossRefGoogle Scholar
  17. 17.
    [17] J.H. Schneibel, M.J. Kramer, and D.S. Easton: Scr. Mater., 2002, vol. 46, pp. 217–221.CrossRefGoogle Scholar
  18. 18.
    [18] R. Mitra, A.K. Srivastava, N.E. Prasad, and S. Kumari: Intermetallics, 2006, vol. 14, pp. 1461–1471.CrossRefGoogle Scholar
  19. 19.
    [19] G. Hasemann, D. Kaplunenko, I. Bogomol, and M. Krüger: JOM, 2016, vol. 68 (11), pp. 2847–2853.CrossRefGoogle Scholar
  20. 20.
    [20] S. Paswan, R. Mitra, and S.K. Roy: Intermetallics, 2007, vol. 15, pp. 1217–1227.CrossRefGoogle Scholar
  21. 21.
    [21] S. Burk, B. Gorr, V.B. Trindade, and H.-J. Christ: Oxid. Met., 2010, vol. 73, pp. 163–181.CrossRefGoogle Scholar
  22. 22.
    [22] B. Gorr, L. Wang, S. Burk, M. Azim, S. Majumdar, H.-J. Christ, D. Mukherji, J. Rösler, D. Schliephake, and M. Heilmaier: Intermetallics, 2014, vol. 48, pp. 34–43.CrossRefGoogle Scholar
  23. 23.
    [23] T. Sossaman, R. Sakidja, and J.H. Perepezko: Scr. Mater., 2012, vol. 67, pp. 891–894.CrossRefGoogle Scholar
  24. 24.
    [24] T. Sossaman, and J.H. Perepezko: Corr. Sci., 2015, vol. 98, pp. 406–416.CrossRefGoogle Scholar
  25. 25.
    [25] M. Mousa, N. Wanderka, M. Timpel, S. Singh, M. Krüger, M. Heilmaier, and J. Banhart: Ultramicroscopy, 2011, vol. 111, pp. 706–710.CrossRefGoogle Scholar
  26. 26.
    [26] H. Saage, M. Krüger, D. Sturm, M. Heilmaier, J.H. Schneibel, E. George, L. Heatherly, Ch. Somsen, G. Eggeler, and Y. Yang: Acta Mater., 2009, vol. 57, pp. 3895–3901.CrossRefGoogle Scholar
  27. 27.
    [27] M. Krüger, D. Schliephake, P. Jain, K. S. Kumar, G. Schumacher, and M. Heilmaier: JOM, 2013, vol. 65 (2), pp. 301–306CrossRefGoogle Scholar
  28. 28.
    [28] J.H. Schneibel, R.O. Ritchie, J.J. Kruzic, and P.F. Tortorelli: Metal. Mater. Trans. A., 2005, vol. 36A, pp. 525–531.CrossRefGoogle Scholar
  29. 29.
    [29] J. Wang, B. Li, R. Li, T. Wang, X. Chen, and G. Zhang: Ceram. Inter., 2019, vol. 45, pp. 1182-1188.Google Scholar
  30. 30.
    [30] R. Mitra: Int. Mater. Rev., 2006, vol. 51, pp. 13–64.CrossRefGoogle Scholar
  31. 31.
    [31] V. Supatarawanich, D.R. Johnson, and C.T. Liu: Mater. Sci. Eng. A., 2003, vol. 344, pp. 328–339.CrossRefGoogle Scholar
  32. 32.
    [32] F. Wang, A. Shan, X. Dong, and J. Wu: Scr. Mater., 2007, vol. 56, pp. 737–740.CrossRefGoogle Scholar
  33. 33.
    [33] A.G. Evans, and E.A. Charles: J. Am. Ceram. Soc., 1976, vol. 59, pp. 371–372.CrossRefGoogle Scholar
  34. 34.
    [34] G.R.Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, J. Am. Ceram. Soc., 1981, vol. 64(9), pp. 533–538.CrossRefGoogle Scholar
  35. 35.
    K. Niihara, R. Morena, and D.P.H. Hasselman: J. Mater. Sci. Lett. 1982, vol. 1, pp. 13–16.CrossRefGoogle Scholar
  36. 36.
    C.A. Nunes, R. Sakidja, Z. Dong, and J.H. Perepezko: Intermetallics, 2000, vol. 8, pp. 327–337.CrossRefGoogle Scholar
  37. 37.
    [37] S.-H. Ha, K. Yoshimi, K. Maruyama, R. Tu, and T. Goto: Mater. Trans., 2010, vol. 51, pp. 1699–1704.CrossRefGoogle Scholar
  38. 38.
    [38] A. Misra, J. J. Petrovic and T. E. Mitchell: Scr. Mater., 1999, vol. 40, pp. 191–196.CrossRefGoogle Scholar
  39. 39.
    S. Paswan, R. Mitra, and S.K Roy: Metall. Mater. Trans. A., 2009, vol. 44, pp. 2644–58.Google Scholar
  40. 40.
    N. Okamoto: J. Phase Equil. Diffus., 2011, vol. 32 (2), p. 176.Google Scholar
  41. 41.
    P. Franke and D. Neuschütz: Scientific Group Thermodata Europe (SGTE): Mo-Zr (Molybdenum – Zirconium), Binary Systems. Part 5: Binary Systems Supplement 1. Landolt-Börnstein - Group IV Physical Chemistry (Numerical Data and Functional Relationships in Science and Technology), vol 19B5. Springer, Berlin, Heidelberg.Google Scholar
  42. 42.
    [42] R.J. Pérez, and B. Sundman: Calphad, 2003, vol 27, pp. 253–262.CrossRefGoogle Scholar
  43. 43.
    A. Zavaliangos, J. Zhang, M. Krammer, and J.R Groza: Mater. Sci. Eng. A. 2004, vol. 379, pp. 218–28.Google Scholar
  44. 44.
    [44] H. Tomino, H. Watanabe, and Y. Kondo: J. Jpn. Soc. Powder Powder Metall., 1997, vol. 44 pp. 974–979.CrossRefGoogle Scholar
  45. 45.
    [45] I. Tomaszkiewicz, G. A. Hope, C. M. Beck, and P.A.G. O’Hare: J. Chem. Thermodyn., 1996, vol. 28, pp. 29–42.CrossRefGoogle Scholar
  46. 46.
    [46] P.A.G. O’Hare: Pure Appl. Chem., 1999, Vol. 71, pp. 1243–1248.CrossRefGoogle Scholar
  47. 47.
    [47] Y.S. Pogozhev, A.Y. Potanin, E.A. Levashov, A.V. Novikov, T.A. Sviridova, and N. A. Kochetov: Russ. J. Non Ferrous Met., 2014, Vol. 55, pp. 632–638.CrossRefGoogle Scholar
  48. 48.
    [48] I. Barin: Thermochemical Data of Pure Substances, 3rd ed, VCH, Weinheim, Germany, 1989.Google Scholar
  49. 49.
    [49] B. Roy, J. Das, and R. Mitra: Corr. Sci., 2013, vol. 68, pp. 231–237.CrossRefGoogle Scholar
  50. 50.
    [50] F.A. Rioult, S.D. Imhoff, R. Sakidja, and J.H. Perepezko: Acta Mater., 2009, vol. 57, pp. 4600–4613.CrossRefGoogle Scholar
  51. 51.
    [51] Y. Kawamoto, K. Clemens, and M. Tomozawa: J. Am. Ceram. Soc., 1981, vol. 64 pp. 292–296.CrossRefGoogle Scholar
  52. 52.
    [52] M. Suzuki, S. Sodeoka, and T. Inoue: Mater. Trans. JIM, 2005, vol. 46, pp. 669–674.CrossRefGoogle Scholar
  53. 53.
    [53] Q. Zhang, H. Yang, F. Zeng, S. Wang, D.Tang, and T. Zhang: RSC Adv., 2015, vol. 5, pp. 41772–41779.CrossRefGoogle Scholar
  54. 54.
    [54] A. Quintas, D. Caurant, O. Majérus, P. Loiseau, T. Charpentier, and J.L. Dussossoy: J. Composite. Compd., 2017, vol. 714, pp. 47–62.Google Scholar
  55. 55.
    [55] K.H. Sun: J. Amer. Ceram. Soc., 1947, vol. 30, pp. 277–281.CrossRefGoogle Scholar
  56. 56.
    [56] D.A. McKeown, I.S. Muller, A.C. Buechele, I.L. Pegg, and C.A. Kendziora, J. Non-Cryst. Solids, 2000, vol. 262, pp. 126–134.CrossRefGoogle Scholar
  57. 57.
    [57] A.M. Huntz: Mater. Sci. Eng. A., 1987, vol. 87, pp. 251–260.CrossRefGoogle Scholar
  58. 58.
    [58] K. Yoshimi, S. Nakatani, S. Hanada, S.-H. Ko and Y.-H. Park: Sci. Technol. Adv. Mater., 2002, vol. 3(2), pp. 181-192.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations