Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1571–1581 | Cite as

Effect of Zinc Concentration on the Structural, Optical, and Magnetic Properties of Mixed Co-Zn Ferrites Nanoparticles Synthesized by Low-Temperature Hydrothermal Method

  • P. T. PhongEmail author
  • P. H. Nam
  • N. X. Phuc
  • B. T. Huy
  • L. T. Lu
  • D. H. Manh
  • In-Ja LeeEmail author


Zinc-substituted cobalt ferrites Co1−xZnxFe2O4 (x = 0.0 to 0.7) nanoparticles have been synthesized using the hydrothermal method. The pure cubic spinel powder samples prepared were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy. It is found that the lattice parameter increases with Zn substitution. The average crystallite size of the particles decreases gradually from 20 to 10 nm with the increase in Zn-content, which is confirmed by transmission electron spectroscopy micrographs. The direct and indirect band gap of Co1−xZnxFe2O4 determined from UV–Vis measurements decreases with the increase of Zn concentration. The magnetic properties have been investigated by physical property measurement system and vibrating sample magnetometer. The saturation magnetization increases slightly from 71.38 emu g−1 (x = 0) to 77.59 emu g−1 (x = 0.1), then decrease with the increase in Zn substitution. Nevertheless, the coercivity significantly decreases with Zn concentrations, which can be explained using Yafet–Kittel model and the distribution of Fe3+ ions among octahedral and tetrahedral sites in samples. This result is further confirmed by photoluminescence emission spectra.



This work was supported by Program of Development in the field of Physics by 2020 under Grant Number KHCBVL.03/18-19. The authors are also thankful to the Ton Duc Thang University and Dongguk University-Gyeongju.


  1. 1.
    O. Masala and R. Seshadri, J. Am. Chem. Soc., 2005, vol. 127(26), pp. 9354-55.CrossRefGoogle Scholar
  2. 2.
    J. Lu, S. Ma, J. Sun, C. Xia, C. Liu, Z. Wang, X. Zhao, F. Gao, Q. Gong, B. Song, X. Shuai, H. Ai, Z. Gu, Biomaterials, 2009, vol. 30(15), pp. 2919-28.CrossRefGoogle Scholar
  3. 3.
    C. Xiangfeng, J. Dongli, Z. Chenmou, Sens. Actuator B-Chem., 2007, vol. 123(2), pp. 793-797.CrossRefGoogle Scholar
  4. 4.
    A. M. Wahba, M. B. Mohamed, N.G. Imam, J. Magn. Magn. Mater., 2016, vol. 408, pp. 51-59.CrossRefGoogle Scholar
  5. 5.
    P. T. Phong, P. H. Nam, D. H. Manh, I. –J. Lee, J. Magn. Magn. Mater., 2017, vol. 433, pp. 76-83.CrossRefGoogle Scholar
  6. 6.
    J.J. Versluijs, M.A. Bari, and J.M.D. Coey: Phys. Rev. Lett., 2001, vol. 87, art. no. 026601.Google Scholar
  7. 7.
    S. Bhukal, M. Dhiman, S. Bansal, M. K. Tripathid, S. Singhal, RSC Adv., 2016, vol. 6(2), pp. 1360-75.CrossRefGoogle Scholar
  8. 8.
    H. Yang, C. Zhang, X. Shi, H. Hu, X. Du, Y. Fang, Y. Ma, H. Wu, S. Yang, Biomaterials, 2010, vol. 31, pp. 3667-73.CrossRefGoogle Scholar
  9. 9.
    D. Varshney, K. Verma, A. Kumar, J. Mol. Struct., 2011, vol. 1006(1-3), pp. 447-452.CrossRefGoogle Scholar
  10. 10.
    S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. X. Li, J. Am. Chem. Soc., 2004, vol. 126(1), pp. 273-9.CrossRefGoogle Scholar
  11. 11.
    H.L. Zhu, X.Y. Gu, D.T. Zuo, Z.K. Wang, N.Y. Wang, and K.H. Yao: Nanotechnology, 2008, vol. 19, art. no. 405503.Google Scholar
  12. 12.
    M. P. Pileni, Adv. Funct. Mater., 2001, vol. 11(5), pp. 323-336.CrossRefGoogle Scholar
  13. 13.
    P. T. Phong, N. X. Phuc, P. H. Nam, N. V. Chien, D. D. Dung, P. H. Linh, Physica B, 2018, vol. 531, pp. 30-34.CrossRefGoogle Scholar
  14. 14.
    P. Guo, L. Cui, Y. Wang, M. Lv, B. Wang, X. S. Zhao, Langmuir, 2013, vol. 29(28), pp. 8997-9003.CrossRefGoogle Scholar
  15. 15.
    R. S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, M. Zmrzlý, L. Kalina, M. Hajdúchová, V. Enev, J. Magn. Magn. Mater., 2015, vol. 378, pp. 190-9.CrossRefGoogle Scholar
  16. 16.
    M. Atif, S. K. Hasanain, M. Nadeem, Solid State Commun., 2006, vol. 138, pp. 416-421.CrossRefGoogle Scholar
  17. 17.
    A. Manikandan, L. John Kennedy, M. Bououdina, J. Judith Vijaya: J. Magn. Magn. Mater. 2014; 349: 249-258.CrossRefGoogle Scholar
  18. 18.
    M. Veverka, Z. Jirák, O. Kaman, K. Knížek, M. Maryško, E. Pollert, K. Závěta, A. Lančok, M. Dlouhá, and S. Vratislav: Nanotechnology, 2011 vol. 22, art. no. 345701.Google Scholar
  19. 19.
    G. Aquilanti, A. Cognigni and M. Anis-ur-Rehman, J. Supercond. Novel Magn., 2011, vol. 24(1-2), pp. 659-663.CrossRefGoogle Scholar
  20. 20.
    S. Jadhav, S. Shirsath, S. Patange, and K. Jadhav: J. Appl. Phys., 2010, vol. 108, art. no. 093920.Google Scholar
  21. 21.
    D. S. Nikam, S. V. Jadhav, V. M. Khot, R. A. Bohara, C. K. Hong, S. S. Malib, S. H. Pawar, RSC Adv., 2015, vol. 5(30), pp. 2338-45.CrossRefGoogle Scholar
  22. 22.
    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, and I. Nakatani: Phys. Rev. B, 2001, vol. 63, art. no. 184108.Google Scholar
  23. 23.
    M. A. F. Ramalho, L. Gama, S. G. Antonio, C. O. Paiva-Santos, E. J. Miola, R. H. G. A. Kiminami, A. C. F. M. Costa, J. Mater. Sci., 2007, vol. 42, pp. 3603-06.CrossRefGoogle Scholar
  24. 24.
    R. K. D. Misra, S. Gubbala, A. Kale, W. F. Egelhoff Jr., Mater. Sci. Eng. B, 2004, vol. 111(2-3), pp. 164-174.CrossRefGoogle Scholar
  25. 25.
    G. Vaidyanathan, S. Sendhilnathan, R. Arulmurugan, J. Magn. Magn. Mater., 2007, vol. 313(2), pp. 293-9.CrossRefGoogle Scholar
  26. 26.
    P. Motavallian, B. Abasht, H. Abdollah-Pour, J. Magn. Magn. Mater., 2018, vol. 451, pp. 577-586.CrossRefGoogle Scholar
  27. 27.
    A.V. Raut, R.S. Barkule, D. R. Shengule, K. M. Jadhav, J. Magn. Magn. Mater., 2014, vol. 358-359, pp. 87-92.CrossRefGoogle Scholar
  28. 28.
    J. Wan, W. Cai, X. Meng, E. Liu, Chem. Commun., 2007, vol. 47, pp. 5004-06.CrossRefGoogle Scholar
  29. 29.
    E. Hema, A. Manikandan, M. Gayarthi, M. Durka, S. A. Antony, B. R. Venkatraman, J. Nanosci. Nanotechnol., 2016, vol. 16(6), pp. 5929-43.CrossRefGoogle Scholar
  30. 30.
    Y. I. Kim, D. Kim, C. S. Lee, Physica B, 2003, vol. 337(1-4), pp. 42-51.CrossRefGoogle Scholar
  31. 31.
    R. Rani, S. K. Sharma, K. R. Pirota, M. Knobel, S. Thakur, M. Singh, Ceram. Int., 2012, vol. 38(3), pp. 2389-94.CrossRefGoogle Scholar
  32. 32.
    M. Sundararajan, L. John Kennedy, J. Judith Vijaya, U. Aruldoss, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, vol. 140, pp. 421-30.CrossRefGoogle Scholar
  33. 33.
    P. Chandramohan, M. P. Srinivasan, S. Velmurugan, S. V. Narasimhan, J. Solid. State Chem., 2011, vol. 184(1), pp. 89-96.CrossRefGoogle Scholar
  34. 34.
    T. L. Phan, N. Tran, D. H. Kim, N. T. Dang, D. H. Manh, T. N. Bach, C. L. Liu, B. W. Lee, J. Electron. Mater., 2017, vol. 46(7), pp. 4214-26.CrossRefGoogle Scholar
  35. 35.
    A. Manohar, C. Krishnamoorth: J. Mater. Sci. Mater. Electron. 2018, vol. 29(1), pp. 737-745.CrossRefGoogle Scholar
  36. 36.
    S. Ayyappan, S. Mahadevan, P. Chandramohan, M. P. Srinivasan, J. Philip, B. Raj, J. Phys. Chem. C, 2010, vol. 114(14), pp. 6334-41.CrossRefGoogle Scholar
  37. 37.
    J. Tauc: Amorphous and Liquid Semiconductors, J. Tauc, ed., Plenum, New York, 1974, Chap. 4Google Scholar
  38. 38.
    C. Himcinschi, I. Vrejoiu, G. Salvan, M. Fronk, A. Talkenberger, D.R.T. Zahn, D. Rafaja, and J. Kortus: J. Appl. Phys., 2013, vol. 113 (8), art. no. 084101.Google Scholar
  39. 39.
    T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Nanoscale Res. Lett., 2017, vol. 12, p. 141.CrossRefGoogle Scholar
  40. 40.
    H. Bai, Z. Liu, D. D. Sun, Int. J. Hydrogen Energy, 2012, vol. 37(19), pp. 13998-14008.CrossRefGoogle Scholar
  41. 41.
    C.Q. Sun: Synthesis, Properties, and Applications of Oxide Nanomaterials, J.A. Rodriguez, M. Fernandez-Garcia, eds., Wiley, Hoboken, NJ, 2007, pp. 7–47.Google Scholar
  42. 42.
    H. Harzali, A. Marzouki, F. Saida, A. Megriche, A. Mgaidi, J. Magn. Magn. Mater., 2018, vol. 460, pp. 89-94.CrossRefGoogle Scholar
  43. 43.
    D. Ravinder, Mater. Lett., 1999, vol. 40(5), pp. 205-208.CrossRefGoogle Scholar
  44. 44.
    A. Manikandan, J. J. Vijaya, L. J. Kennedy, M. Bououdina, Ceram. Int., 2013, vol. 39(5), pp. 5909-17.CrossRefGoogle Scholar
  45. 45.
    N. Pathak, S. K. Gupta, K. Sanyal, M. Kumar, R. M. Kadam, V. Natarajan, Dalton Trans., 2014, vol. 43, pp. 9313-23.CrossRefGoogle Scholar
  46. 46.
    M. Suzuki, S.I. Fullem, and I.S. Suzuki: Phys. Rev. B, 2009, vol. 79 art. no. 024418.Google Scholar
  47. 47.
    S. Morup, M. F. Hansen, C. Frandsen, Beilstein J. Nanotechnol., 2010, vol. 1, pp 182-190.CrossRefGoogle Scholar
  48. 48.
    P. T. Phong, D. H. Manh, L. H. Nguyen, D. K. Tung, N. X. Phuc, I. –J. Lee, J. Magn. Magn. Mater., 2014, vol. 368, pp. 240-5.CrossRefGoogle Scholar
  49. 49.
    K. E. Mooney, J. A. Nelson, M. J. Wagner, Chem. Mater., 2004, vol. 16(16), pp. 3155-61.CrossRefGoogle Scholar
  50. 50.
    K. H. J. Buschow: Handbook of Magnetic Materials, Vol. 8. North Holland: Amsterdam (1995), p 212.Google Scholar
  51. 51.
    F. Luis, J.M. Torres, L.M. García, J. Bartolomé, J. Stankiewicz, F. Petroff, F. Fettar, J.-L. Maurice, and A. Vaurès: Phys. Rev. B, 2002, vol. 65, art. no. 094409.Google Scholar
  52. 52.
    Schrefl, J. Fidler, H. Kronmuller, Phys. Rev. B, 1994, vol. 49, p. 6100.CrossRefGoogle Scholar
  53. 53.
    J. P. Wang, D. -H. Han, H. -L. Luo, Q. -X. Lu, Y. -W. Sun, Appl. Phys. A, 1995, vol. 61(1), pp. 407-415.CrossRefGoogle Scholar
  54. 54.
    P. T. Phong, D. H. Manh, P. H. Nam, D. K. Tung, N. X. Phuc, In-Ja Lee, Physica B, 2014, vol. 444, pp. 94-102.CrossRefGoogle Scholar
  55. 55.
    A. Franco, F.L.A. Machado, and V.S. Zapf: J. Appl. Phys., 2011, vol. 110, art. no. 053913.Google Scholar
  56. 56.
    A. C. Lima, M. A. Morales, J. H. Araujo, J. M. Soares, D. M. A. Melo, A. S. Carrico, Ceram. Inter., 2015, vol. 41(9), pp. 11804-09.CrossRefGoogle Scholar
  57. 57.
    B. D. Cullity and C. D. Graham, Introduction to magnetic materials, Addison-Wesley, Upper Saddle River, 2009, p. 227.Google Scholar
  58. 58.
    L. Neel, C. R. Acad, Sci. Paris, 1950, vol. 230, p. 375.Google Scholar
  59. 59.
    Y. Koseoglu, A. Baykal, F. Gozuak, H. Kavas, Polyhedron, 2009, vol. 28(14), pp. 2887-92.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Laboratory of Magnetism and Magnetic MaterialsTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam
  4. 4.DuyTan UniversityDa Nang CityVietnam
  5. 5.Institute for Tropical TechnologyVietnam Academy of Science and TechnologyHanoiVietnam
  6. 6.Department of Advanced Materials ChemistryDongguk University-GyeongjuGyeongju-SiKorea

Personalised recommendations