Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1489–1501 | Cite as

Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel

  • Prvan Kumar Katiyar
  • S. Misra
  • K. MondalEmail author
Article
  • 160 Downloads

Abstract

The present work discusses the comparative corrosion behavior of five microstructures of steels, namely, pearlite, bainite, spheroidized, martensite, and tempered martensite, which have been processed, respectively, by air cooling, isothermal transformation, spheroidizing, quenching, and tempering of a steel with composition 0.70C, 0.24Si, 1.12Mn, 0.026P, 0.021S, 0.013Nb, 0.0725Ta, and 97.7Fe (all are in wt pct). Dynamic polarization and alternating current (AC) impedance spectroscopic tests in freely aerated 3.5 pct NaCl solution show that the corrosion resistance of the steel specimens consisting of the preceding five microstructures decreases in the following sequence: pearlitic – bainitic – spheroidized – martensitic – tempered martensitic steels. The variation in the corrosion rate has been attributed to the shape, size, and distribution of the ferrite and cementite.

REFERENCES

  1. 1.
    Mars G. Fontana: Corrosion Engineering, McGraw-Hill, New York, NY, 1987.Google Scholar
  2. 2.
    R. Balasubramaniam, B. Panda, G. Dwivedi, A.P. Moon, S. Mahapatra, and A.K. Manuwal: Curr. Sci., 2011, vol. 100, pp. 52–57.Google Scholar
  3. 3.
    B. Panda and R. Balasubramaniam: Mater. Sci. Technol., 2009, vol. 25, pp. 1375–82.CrossRefGoogle Scholar
  4. 4.
    A.P. Moon, S. Sangal, S. Layek, S. Giribaskar, and K. Mondal: Metall. Mater. Trans. A, 2015, vol. 46A, pp.1500–18.CrossRefGoogle Scholar
  5. 5.
    A. Moon, S. Sangal, and K. Mondal: Trans. Ind. Inst. Met., 2013, vol. 66, pp. 33–41.CrossRefGoogle Scholar
  6. 6.
    G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1961–74.CrossRefGoogle Scholar
  7. 7.
    A.P. Moon, S. Sangal, S. Srivastav, N.S. Gajbhiye, and K. Mondal: J. Mater. Eng. Perform., 2015, vol. 24, pp. 85–97.CrossRefGoogle Scholar
  8. 8.
    E.C. De Souza, S.M. Rossitti, C.A. Fortulan, J.M. Domingos, and D.A. Rollo: Mater. Res., 2016, vol. 20, pp. 21–29.CrossRefGoogle Scholar
  9. 9.
    P. Sadler, N.C. Pruitt, T.S. Sudarshan, and M.R. Louthan: J. Mater. Eng., 1987, vol. 91, pp. 51–156.Google Scholar
  10. 10.
    S.C. Ikpeseni: Int. J. Eng. Sci. Invent., 2017, vol. 6, pp. 60–65.CrossRefGoogle Scholar
  11. 11.
    V.C. Igwemezie and J.E.O. Ovri: Int. J. Eng. Sci., 2013, vol. 2, pp. 2319–1805.Google Scholar
  12. 12.
    S.H. Atapek, S. Polat, and S. Zor: Prot. Met. Phys. Chem. Surf., 2013, vol. 49, pp. 240–46.CrossRefGoogle Scholar
  13. 13.
    O. Kazum, M.B. Kannan, H. Beladi, I.B. Timokhina, P.D. Hodgson, and S. Khoddam: Mater. Des., 2014, vol. 54, pp. 67–71.CrossRefGoogle Scholar
  14. 14.
    D.A. López, W.H. Schreiner, S.R.R. de Sánchez, and S.N. Simison: Appl. Surf. Sci., 2003, vol. 207, pp. 69–85.CrossRefGoogle Scholar
  15. 15.
    D.A. López, S.N. Simison, and S.R. De Sánchez: Electrochim Acta, 2003, vol. 48, pp. 845–54.CrossRefGoogle Scholar
  16. 16.
    H.J. Cleary and N.D. Greene: Corros. Sci., 1967, vol. 7, pp. 821–31.CrossRefGoogle Scholar
  17. 17.
    D. Clover, B. Kinsella, B. Pejcic, and R. De Marco: J. Appl. Electrochem., 2005, vol. 35, pp. 139–49.CrossRefGoogle Scholar
  18. 18.
    W. Callister and D. Rethwisch: Materials Science and Engineering: An Introduction, John Wiley & Sons, New York, NY, 2007.Google Scholar
  19. 19.
    T. Arai: Heat Treating, ASM Handbook, ASM International, 2001.Google Scholar
  20. 20.
    J. Guo, S. Yang, C. Shang, Y. Wang, and X. He: Corros. Sci., 2008, vol. 51, pp. 242–51.CrossRefGoogle Scholar
  21. 21.
    V. Rault, V. Vignal, H. Krawiec, and O. Tadjoa: Corros. Sci., 2014, vol. 86, pp. 275–84.CrossRefGoogle Scholar
  22. 22.
    S.I. Al-rubaiey, E.A. Anoon, and M.M. Hanoon: Eng. Technol. J., 2013, vol. 31, pp. 1–12.Google Scholar
  23. 23.
    M. Ferhat, A. Benchettara, S.E. Amara, and D. Najjar: J. Mater. Environ. Sci., 2014, vol. 5, pp. 1059–68.Google Scholar
  24. 24.
    X. Hao, J. Dong, I.I.N. Etim, J. Wei, and W. Ke: Corros. Sci., 2016, vol. 110, pp. 296–304.CrossRefGoogle Scholar
  25. 25.
    D.O. Oluyemi, O.I. Oluwole, and B.O. Adewuyi: Mater. Res., 2011, vol. 14, pp. 135–41.CrossRefGoogle Scholar
  26. 26.
    D.N. Staicopolus: J. Electrochem. Soc., 1963, vol. 110, p. 1121.CrossRefGoogle Scholar
  27. 27.
    J.B. Sun, G.A. Zhang, W. Liu, and M.X. Lu: Corros. Sci., 2012, vol. 57, pp. 131–38.CrossRefGoogle Scholar
  28. 28.
    H. Bhadeshia: Materials Algorithm Project Program Library, Phase Transformation Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, United Kingdom, https://www.phase-trans.msm.cam.ac.uk/map/steel/programs/mucg46-b.html.
  29. 29.
    W.C. Leslie: The Physical Metallurgy of Steels, Hemisphere Pub. Corp., Philadelphia, PA, 1981.Google Scholar
  30. 30.
    J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, and D.C. Joy: Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed., Springer, New York, NY, 1992.Google Scholar
  31. 31.
    ASTM G102-89: Standard practice for calculation of corrosion rates and related information from electrochemical measurements, Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 1999, vol. 3, p. 416.Google Scholar
  32. 32.
    J.K. Saha: Corrosion of Constructional Steels in Marine and Industrial Environment, Springer, New York, NY, 2013.CrossRefGoogle Scholar
  33. 33.
    A. Lasia: Electrochemical Impedance Spectroscopy and Its Applications, Springer, New York, NY, 2014.CrossRefGoogle Scholar
  34. 34.
    V.F. Lvovich: Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, John Wiley & Sons, New York, NY, 2012.CrossRefGoogle Scholar
  35. 35.
    G.E. Totten: Steel Heat Treatment Handbook, Taylor & Francis Group, New York, 2006.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.Department of Civil EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations