Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1137–1141 | Cite as

Lowering Strain Rate Simultaneously Enhances Carbon- and Hydrogen-Induced Mechanical Degradation in an Fe-33Mn-1.1C Steel

  • Ibrahim Burkay Tuğluca
  • Motomichi KoyamaEmail author
  • Yusaku Shimomura
  • Burak Bal
  • Demircan Canadinc
  • Eiji Akiyama
  • Kaneaki Tsuzaki
Communication

Abstract

We investigated the strain rate dependency of the hydrogen-induced mechanical degradation of Fe-33Mn-1.1C steel at 303 K within the strain rate range of 10−2 to 10−5 s−1. In the presence of hydrogen, lowering the strain rate monotonically decreased the work hardening rate, elongation, and tensile strength and increased the yield strength. Lowering the strain rate simultaneously enhanced the plasticity-related effects of hydrogen and carbon, leading to the observed degradation of the ductility.

Notes

This work was financially supported by the Japan Science and Technology Agency (JST) (Grant No.: 20100113) under Industry-Academia Collaborative R&D Program “Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials” and JSPS KAKENHI (JP16H06365 and JP17H04956). B. Bal acknowledges the financial support by the AGU-BAP under Grant Number: FAB-2017-77.

References

  1. 1.
    R.A. Hadfield. Manganese-steel: I manganese in its application to metallurgy: II some newly-discovered properties of iron and manganese. Institution: Westminster, 1888.Google Scholar
  2. 2.
    2. O. Bouaziz, S. Allain, and C. Scott: Scripta Mater., 2008, vol. 58, pp. 484-487.CrossRefGoogle Scholar
  3. 3.
    3. D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed–Akbari, T. Hickel, F. Roters, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 494-510.CrossRefGoogle Scholar
  4. 4.
    4. P. Chowdhury, D. Canadinc, and H. Sehitoglu: Mater. Sci. Eng. R, 2017, vol. 122, pp. 1-28.CrossRefGoogle Scholar
  5. 5.
    5. Y. Dastur and W. Leslie: Metall. Trans. A, 1981, vol.12, pp. 749-759.CrossRefGoogle Scholar
  6. 6.
    6. S.-J. Lee, J. Kim, S.N. Kane, and B.C. De Cooman: Acta Mater., 2011, vol. 59, pp. 6809-6819.CrossRefGoogle Scholar
  7. 7.
    7. M. Koyama, E. Akiyama, Y.-K. Lee, D. Raabe, and K. Tsuzaki: Int. J. Hydrogen Energy, 2017, vol. 42, pp. 12706-12723.CrossRefGoogle Scholar
  8. 8.
    8. M. Koyama, Y. Shimomura, A. Chiba, E. Akiyama, and K. Tsuzaki: Scripta Mater., 2017, vol. 141, pp. 20-23.CrossRefGoogle Scholar
  9. 9.
    9. I.B. Tuğluca, M. Koyama, B. Bal, D. Canadinc, E. Akiyama, and K. Tsuzaki: Mater. Sci. Eng. A, 2018, vol. 717, pp. 78-84.CrossRefGoogle Scholar
  10. 10.
    10. B. Bal, M. Koyama, G. Gerstein, H.J. Maier, and K. Tsuzaki: Int. J. Hydrogen Energy, 2016, vol. 41, pp. 15362-15372.CrossRefGoogle Scholar
  11. 11.
    11. E. Sirois and H.K. Birnbaum: Acta Metall. Mater., 1992, vol. 40, pp. 1377-1385.CrossRefGoogle Scholar
  12. 12.
    12. A. Kimura and H.K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 757-766.CrossRefGoogle Scholar
  13. 13.
    13. D. Canadinc, C. Efstathiou, and H. Sehitoglu: Scripta Mater., 2008, vol. 59, pp. 1103-1106.CrossRefGoogle Scholar
  14. 14.
    14. D.P. Abraham and C.J. Altstetter: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2849-2858.CrossRefGoogle Scholar
  15. 15.
    15. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191-202.CrossRefGoogle Scholar
  16. 16.
    16. J. Eastman, F. Heubaum, T. Matsumoto and H.K. Birnbaum: Acta Metall., 1982, vol. 30, pp. 1579-1586.CrossRefGoogle Scholar
  17. 17.
    17. A.H. Cottrell, Dislocations and plastic flow in crystals, Oxford University Press, New York, 1954.CrossRefGoogle Scholar
  18. 18.
    21. F. Fabrègue, C. Landron, O. Bouaziz and E. Maire: Mater. Sci. Eng. A, 2013, vol. 579, pp. 92-98.CrossRefGoogle Scholar
  19. 19.
    22. C.L. Yang, Z.J. Zhang, P. Zhang and Z.F. Zhang: Acta Mater. 2017, vol. 136, pp. 1-10.CrossRefGoogle Scholar
  20. 20.
    23. H.-Y. Yu, S.-M. Lee, J.-H. Nam, S.-J. Lee, D. Fabrègue, M.-H. Park, N. Tsuji and Y.-K. Lee: Acta Mater., 2017, vol. 131, pp. 435-444.CrossRefGoogle Scholar
  21. 21.
    24. M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739-2745.CrossRefGoogle Scholar
  22. 22.
    25. M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama and D. Raabe: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 4634-4646.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Ibrahim Burkay Tuğluca
    • 1
    • 2
  • Motomichi Koyama
    • 1
    Email author
  • Yusaku Shimomura
    • 1
  • Burak Bal
    • 2
  • Demircan Canadinc
    • 3
  • Eiji Akiyama
    • 4
  • Kaneaki Tsuzaki
    • 1
    • 5
  1. 1.Department of Mechanical EngineeringKyushu UniversityFukuokaJapan
  2. 2.Department of Mechanical EngineeringAbdullah Gül UniversityKayseriTurkey
  3. 3.Department of Mechanical EngineeringKoç UniversitySarıyerTurkey
  4. 4.Institute for Materials ResearchTohoku UniversitySendaiJapan
  5. 5.HYDROGENIOUSKyushu UniversityFukuokaJapan

Personalised recommendations