Advertisement

An Experimental Benchmark of Non-metallic Inclusion Distribution Inside a Heavy Continuous-Casting Slab

  • Zhongqiu LiuEmail author
  • Baokuan Li
  • Menghuai Wu
  • Guodong Xu
  • Xiaoming Ruan
  • Andreas Ludwig
Article
  • 68 Downloads

Abstract

Different mathematical models were suggested to calculate the transport phenomena of non-metallic inclusions during continuous casting of steel, but there are no experimental data at the process scale available to evaluate the models. This paper is to provide an experimental benchmark to evaluate those models. It includes the most necessary casting process parameters for a heavy continuous-casting (CC) slab and the final result on the spatial and size distribution of macroscopic non-metallic inclusions (MNMIs) in the as-cast slab. The MNMIs with diameter larger than 50 μm inside the CC slab were in situ detected through a fast-detection platform (FDP). The casting sample (half width of the slab 1150 mm × 300 mm of entire slab thickness × 75 mm in casting direction) were ground slice by slice with the maximum resolution of 1 mm; the morphology of the MNMIs was metallographically analyzed and the number of the MNMIs of difference size classes was counted; finally, the (3D) spatial distribution of MNMIs of difference size classes in the casting sample was reconstructed. Further information about the distribution of MNMIs was reported as well: (1) typical morphologies of independent nearly spherical MNMIs, “bubble + NMIs,” irregular-shaped MNMIs, and cluster MNMIs; (2) the size distribution of MNMIs along the thickness direction in both vertical section and bending section; (3) a probability number density function of MNMI diameter.

Notes

Acknowledgments

The authors are grateful for the support from National Natural Science Foundation of China (Nos. 51604070 and 51574068), Fundamental Research Funds for the Central Universities of China (No. N162504009), and China Scholarship Council (No. 201706085027).

References

  1. 1.
    L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-91.CrossRefGoogle Scholar
  2. 2.
    H. Jacobi: Steel Res. Int., 2006, vol. 77, pp. 558-64.CrossRefGoogle Scholar
  3. 3.
    K.D. Xu: Acta Metall. Sin., 2009, vol. 45, pp. 257-69.Google Scholar
  4. 4.
    X. Zou, D. Zhao, J. Sun, C. Wang, and H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49, pp. 481-89.CrossRefGoogle Scholar
  5. 5.
    C. Pfeiler, M. Wu, and A. Ludwig: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 115-20.CrossRefGoogle Scholar
  6. 6.
    C. Pfeiler, B.G. Thomas, M. Wu, A. Ludwig, and A. Kharicha: Steel Res. Int., 2008, vol. 79, pp. 599-607.CrossRefGoogle Scholar
  7. 7.
    B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45, pp. 22-35.CrossRefGoogle Scholar
  8. 8.
    Z. Liu, B. Li, and M. Jiang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 675-97.CrossRefGoogle Scholar
  9. 9.
    S. Lee, S. Kim, and H. Lee (2011) J. Iron Steel Res. Int., vol. 18, pp. 220–226.Google Scholar
  10. 10.
    Z. Liu and B. Li: Powder Technol., 2018, vol. 323, pp. 403-15.CrossRefGoogle Scholar
  11. 11.
    Z. Liu and B. Li: Powder Technol., 2016, vol. 287, pp. 315-29.CrossRefGoogle Scholar
  12. 12.
    Z. Liu, B. Li, L. Zhang, and G. Xu: ISIJ Int., 2014, vol. 54, pp. 2324-33.CrossRefGoogle Scholar
  13. 13.
    H. Barati, M. Wu, A. Kharicha, and A. Ludwig: Powder Techno., 2018, vol. 329, pp. 181-98.CrossRefGoogle Scholar
  14. 14.
    S. Luo, B. Wang, Z. Wang, D. Jiang, W. Wang, and M. Zhu: ISIJ Int., 2017, vol. 57, pp. 2000-09.CrossRefGoogle Scholar
  15. 15.
    X. Deng, L. Li, X. Wang, Y. Ji, and G. Zhu: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 531-43.CrossRefGoogle Scholar
  16. 16.
    H. Liao, S. Yang, J. Li, and J. Feng: Metall. Mater. Trans. B, 2017, vol. 48, pp. 3101-07.CrossRefGoogle Scholar
  17. 17.
    J.C. Pandey, P.N. Choubey, and M. Raj: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1727-37.CrossRefGoogle Scholar
  18. 18.
    R. Dekkers, B. Balanpain, P. Wollants, F. Haers, B. Gommers, and C. Vercruyssen: Steel Res. Int., 2003, vol. 74, pp. 351-55.CrossRefGoogle Scholar
  19. 19.
    Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S. Lekakh, K. Peaslee: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1291-303.CrossRefGoogle Scholar
  20. 20.
    X. Zhang, Y. Ren, and L. Zhang: Metall. Mater. Trans. A, 2018, Vol. 49, pp. 5469–77.CrossRefGoogle Scholar
  21. 21.
    N. Kasai, H. Ookubo, and T. Nishi: Tetsu-to-Hagané, 2005, vol. 91, pp. 537-45.CrossRefGoogle Scholar
  22. 22.
    L. Zhang, J. Zhi, F. Mei, L. Zhu, X. Jiang, J. Shen, J. Cui, K. Cai, and B.G. Thomas: Ironmak. Steelmak., 2006, vol. 22, pp. 129-39.CrossRefGoogle Scholar
  23. 23.
    Z. Deng, M. Zhu, B. Zhong, and S. Du: ISIJ Int., 2014, vol. 54, pp. 2813-20.CrossRefGoogle Scholar
  24. 24.
    S. Basu, S.K. Choudhary, and N.U. Girase: ISIJ Int., 2004, vol. 44, pp. 1653-60.CrossRefGoogle Scholar
  25. 25.
    H. Yin, H. Shibata, T. Emi, and M. Suzuk: ISIJ Int., 1997, vol. 37, pp. 936-45.CrossRefGoogle Scholar
  26. 26.
    Q. Wang, X. Zou, H. Matsuura, and C. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 18-22.CrossRefGoogle Scholar
  27. 27.
    X. Zou, J. Sun, H. Matsuura, and C. Wang: Metall. Mater. Trans. B, 2018, Vol. 49, pp. 2168–73.CrossRefGoogle Scholar
  28. 28.
    Y. Miki, H. Ohno, Y. Kishimoto, and S. Tanaka: Tetsu-to-Hagané, 2011, vol. 97, pp. 423-32.CrossRefGoogle Scholar
  29. 29.
    H. Esaka, Y. Kuroda, K. Shinozuka, and M. Tamura: ISIJ Int., 2004, vol. 44, pp. 682-90.CrossRefGoogle Scholar
  30. 30.
    X. Jin, Z. Lei, Z. Yu, H. Zhang, K. Deng, and Z. Ren: Acta Metall. Sin., 2011, vol. 47, pp. 763-68.Google Scholar
  31. 31.
    L. Zhang, Y. Wang, E. Maetinez, and K.D. Peaslee: Proceedings of TMS Conference, 2012, pp. 3–16.Google Scholar
  32. 32.
    X. Li, B. Li, Z. Liu, R. Niu, Q. Liu: ISIJ Int., 2018, vol. 58, 283–362.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Zhongqiu Liu
    • 1
    • 2
    Email author
  • Baokuan Li
    • 1
  • Menghuai Wu
    • 2
  • Guodong Xu
    • 3
  • Xiaoming Ruan
    • 3
  • Andreas Ludwig
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangP.R. China
  2. 2.Chair of Simulation and Modeling of Metallurgical Processes, Department of MetallurgyMontanuniversität LeobenLeobenAustria
  3. 3.Baoshan Iron & Steel Co., Ltd.ShanghaiP.R. China

Personalised recommendations