Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1358–1369 | Cite as

Early Time Evolution of Selective Oxidation in a CMnSi AHSS

  • Mary E. StoryEmail author
  • Bryan A. Webler
Article
  • 108 Downloads

Abstract

The influence of dew point temperature (DPT) and oxidation time on the selective oxidation of a Fe-0.09C-2.02Mn-0.91Si (wt pct) advanced high-strength steel during the early stages of oxidation was investigated in this study. Samples were annealed at 1123 K (850 °C) in a high-temperature confocal scanning laser microscope for 0, 30, 60, 90, and 120 seconds in an N2 + 5 pct H2 atmosphere with 243 K (− 30 °C) or 273 K (0 °C) DPT. Oxide morphology and chemistry were examined with respect to time and atmosphere DPT using scanning electron microscopy, scanning transmission electron microscopy, focused ion beam (FIB) milling, FIB serial sectioning, and energy dispersive spectroscopy techniques. Significant internal and external oxidation for all samples, including those with a 0 second isothermal hold, was observed. This indicated significant oxidation occurred upon heating. Samples oxidized in the 273 K (0 °C) DPT atmosphere exhibited intra- and intergranular internal oxidation and surfaces covered in discrete iron-rich nodules. These were attributed to stress generation during oxidation. Samples oxidized in the 243 K (− 30 °C) DPT atmosphere had shallow internal oxidation, sparse intragranular oxides, and surfaces rich in silicon and manganese containing oxide. Internal oxides for both atmospheres and all isothermal hold times were comprised of a silicon-rich core and manganese-rich outer shell was frequently observed. This core/shell structure was related to evolving oxide stability during the high-temperature exposure.

Notes

Acknowledgments

The authors gratefully acknowledge the support from the industrial members of the Center for Iron and Steelmaking Research at Carnegie Mellon University as well as the use of the Materials Characterization Facility at Carnegie Mellon University supported by Grant MCF-677785.

References

  1. 1.
    F.E. Goodwin and E.A. Silva: in Galvatech 2015, 2015, pp. 1–10.Google Scholar
  2. 2.
    G. Angeli and J. Faderl: in Galvatech 2015, 2015, pp. 19–27.Google Scholar
  3. 3.
    C.D. Horvath: in Galvatech 2004, 2004, pp. 251–62.Google Scholar
  4. 4.
    J. Fekete and J. Hall: NIST Intern. Rep. 6668, 2012, pp. 3–33.Google Scholar
  5. 5.
    M.A. Omar: The Automotive Body Manufacturing Systems and Body Manufacturing Systems and Processes, First., John Wiley & Sons, Ltd., Chichester, West Sussex, United Kingdom, 2011.CrossRefGoogle Scholar
  6. 6.
    M.Y. Demeri: in Advanced High-Strength Steels—Science, Technology, and Application, ASM International, Materials Park, 2013, pp. 59–70.Google Scholar
  7. 7.
    L. Cho, E.J. Seo, G.S. Jung, D.W. Suh, and B.C. De Cooman: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, vol. 47, pp. 1705–19.Google Scholar
  8. 8.
    Y. Wang, C. Thorning, S. Sridhar, D.M. Haezebrouck, and T. Simpson: International Conference on Advanced High Strength Sheet Steels for Automotive Application Preceedings, 2004, pp. 417–24.Google Scholar
  9. 9.
    Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, and S. Yamaguchi: ISIJ Int., 2009, vol. 49, pp. 564–73.CrossRefGoogle Scholar
  10. 10.
    Y.F. Gong, H.S. Kim, and B.C. De Cooman: ISIJ Int., 2008, vol. 48, pp. 1745–51.CrossRefGoogle Scholar
  11. 11.
    Y.F. Gong, H.S. Kim, and B.C. De Cooman: ISIJ Int., 2009, vol. 49, pp. 557–63.CrossRefGoogle Scholar
  12. 12.
    B.C. De Cooman, J. Oh, L. Cho, and C. Lee: AISTech 2016 Proc., 2016, pp. 2107–12.Google Scholar
  13. 13.
    T.L. Baum, R.J. Fruehan, and S. Sridhar: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2007, vol. 38, pp. 287–97.Google Scholar
  14. 14.
    M. Blumenau, A. Barnoush, I. Thomas, H. Hofmann, and H. Vehoff: Surf. Coatings Technol., 2011, vol. 206, pp. 542–52.CrossRefGoogle Scholar
  15. 15.
    R. Kavitha and J.R. McDermid: Surf. Coatings Technol., 2012, vol. 212, pp. 152–8.CrossRefGoogle Scholar
  16. 16.
    T. Van De Putte, D. Loison, J. Penning, and S. Claessens: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, vol. 39, pp. 2875–84.Google Scholar
  17. 17.
    L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim, and B.C. De Cooman: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, vol. 44, pp. 362–71.Google Scholar
  18. 18.
    L. Cho, G.S. Jung, and B.C. De Cooman: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, vol. 45, pp. 5158–72.Google Scholar
  19. 19.
    L. Cho, M.S. Kim, Y.H. Kim, and B.C. De Cooman: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, vol. 45, pp. 4484–98.Google Scholar
  20. 20.
    E.M. Bellhouse, A.I.M. Mertens, and J.R. McDermid: Mater. Sci. Eng. A, 2007, vol. 463, pp. 147–56.CrossRefGoogle Scholar
  21. 21.
    R. Khondker, A. Mertens, and J.R. McDermid: Mater. Sci. Eng. A, 2007, vol. 463, pp. 157–65.CrossRefGoogle Scholar
  22. 22.
    G.M. Song, T. Vystavel, N. Van Der Pers, J.T.M. De Hosson, and W.G. Sloof: Acta Mater., 2012, vol. 60, pp. 2973–81.CrossRefGoogle Scholar
  23. 23.
    G. Seyed Mousavi and J.R. McDermid: Metall. Mater. Trans. A,  https://doi.org/10.1007/s11661-018-4854-2.
  24. 24.
    E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, vol. 41, pp. 1539–53.Google Scholar
  25. 25.
    E.M. Bellhouse and J.R. Mcdermid: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2012, vol. 43, pp. 2426–41.Google Scholar
  26. 26.
    E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, vol. 42, pp. 2753–68.Google Scholar
  27. 27.
    R. Sagl, A. Jarosik, D. Stifter, and G. Angeli: Corros. Sci., 2013, vol. 70, pp. 268–75.CrossRefGoogle Scholar
  28. 28.
    I. Sohn, J. Kim, and S. Sridhar: 2015, vol. 55, pp. 2008–17.Google Scholar
  29. 29.
    A. Ollivier-Leduc, M.-L. Giorgi, D. Balloy, and J.-B. Guillot: Corros. Sci., 2011, vol. 53, pp. 1375–82.CrossRefGoogle Scholar
  30. 30.
    M.E. Story and B.A. Webler: in AISTech 2018 Proc., 2018, pp. 2241–50.Google Scholar
  31. 31.
    M.E. Story and B.A. Webler: JOM, 2018, vol. 70, pp. 1225–31.CrossRefGoogle Scholar
  32. 32.
    32 C. Wagner: Zeitschrift fuer Elektrochemie, 1959, vol. 63, pp. 772–82.Google Scholar
  33. 33.
    R.A. Rapp: Acta Metall., 1961, vol. 9, pp. 730–41.CrossRefGoogle Scholar
  34. 34.
    G. Böhm and M. Kahlweit: Acta Metall., 1964, vol. 12, pp. 641–8.CrossRefGoogle Scholar
  35. 35.
    R.A. Rapp: Corrosion, 1965, vol. 21, pp. 382–401.CrossRefGoogle Scholar
  36. 36.
    J.S. Kirkaldy: Can. Metall. Q., 1969, vol. 8, pp. 35–8.CrossRefGoogle Scholar
  37. 37.
    E.K. Ohriner and J.E. Morral: Scr. Metall., 1979, vol. 13, pp. 7–10.CrossRefGoogle Scholar
  38. 38.
    D. Huin, P. Flauder, and J.B. Leblond: Oxid. Met., 2005, vol. 64, pp. 131–67.CrossRefGoogle Scholar
  39. 39.
    K. Eliceiri, C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–5.CrossRefGoogle Scholar
  40. 40.
    J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, and D.C. Joy: Scanning Electron Microsc X-Ray Microanal, 2018.Google Scholar
  41. 41.
    R.W. Balluffi: Metall. Trans. B, 1982, vol. 13, pp. 527–53.CrossRefGoogle Scholar
  42. 42.
    H.B. Aaron and F. Weinberg: Acta Metall., 1972, vol. 20, pp. 339–44.CrossRefGoogle Scholar
  43. 43.
    S. Ratanaphan, D.L. Olmsted, V. V. Bulatov, E.A. Holm, A.D. Rollett, and G.S. Rohrer: Acta Mater., 2015, vol. 88, pp. 346–54.CrossRefGoogle Scholar
  44. 44.
    T. Onishi, S. Nakakubo, and M. Takeda: Mater. Trans., 2010, vol. 51, pp. 482–7.CrossRefGoogle Scholar
  45. 45.
    K.-K. Wang, C.-W. Hsu, L. Chang, D. Gan, T.-R. Chen, and K.-C. Yang: J. Electrochem. Soc., 2012, vol. 159, pp. C561–70.CrossRefGoogle Scholar
  46. 46.
    V.A. Lashgari, G. Zimbitas, C. Kwakernaak, and W.G. Sloof: Oxid. Met., 2014, vol. 82, pp. 249–69.CrossRefGoogle Scholar
  47. 47.
    47 Y. Suzuki, M. Miyata, and N. Yoshimi: in Galvatech 2015, 2015, pp. 733–40.Google Scholar
  48. 48.
    P. Bolsaitis and M. Kahlweit: Acta Metall., 1967, vol. 15, pp. 765–72.CrossRefGoogle Scholar
  49. 49.
    P.J. Nolan and P.J. Grundy: J. Mater. Sci., 1971, vol. 6, pp. 1143–50.CrossRefGoogle Scholar
  50. 50.
    A.N. Khan, I. Salam, and A. Tauqir: Surf. Coatings Technol., 2004, vol. 179, pp. 33–8.CrossRefGoogle Scholar
  51. 51.
    S. Guruswamy, S.M. Park, J.P. Hirth, and R.A. Rapp: Oxid. Met., 1986, vol. 26, pp. 77–100.CrossRefGoogle Scholar
  52. 52.
    J.R. Mackert, R.D. Ringle, and C.W. Fairhurst: J. Dent. Res., 1983, vol. 62, pp. 1229–35.CrossRefGoogle Scholar
  53. 53.
    M. Pourmajidian and J.R. McDermid: ISIJ Int.,  https://doi.org/10.2355/isijinternational.isijint-2017-688.

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations