Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1421–1436 | Cite as

Effect of Al Addition on the Microstructure and Phase Stability of P91 Ferritic-Martensitic Steel

  • S. Haribabu
  • C. SudhaEmail author
  • S. Raju
  • R. N. Hajra
  • R. Mythili
  • J. Jayaraj
  • S. Murugesan
  • S. Saroja
Article
  • 167 Downloads

Abstract

This paper presents the results of an experimental and computational study carried out to elucidate the effect of Al on the microstructure and phase stability of P91 F/M steel in as-cast, homogenized and normalized conditions. Al-added steels followed ‘Ferritic-Austenitic’ mode of solidification and the as-cast microstructures consisted of δ-ferrite + α′-martensite, the volume fraction of ferrite and hardness of martensite increased with Al concentration. Heat treatments and DSC experiments confirmed increased stability for δ-ferrite with Al addition. Systematic change in the phase transformations temperatures and volume fraction of equilibrium phases due to Al addition was estimated with the help of Thermo-Calc®. Al addition promoted the formation of AlN which was confirmed through electron microscopy-based investigations. AlN dissolution temperature was always above γ-loop which made it impossible to dissolve during austenization. With the help of Scheil and equilibrium simulations using Thermo-Calc®, elemental partitioning between δ-ferrite and α′ phases was found to be the reason for higher hardness of martensite. Based on experimental evidences, it is concluded that except in the case of 0.48 wt pct Al-added steel it is impossible to obtain single phase γ-field (without ferrite) at high temperature thereby a fully martensite structure on cooling.

Notes

Acknowledgments

The authors thank Dr. A.K. Bhaduri, Director, IGCAR and Dr. G. Amarendra, Director, Metallurgy and Materials Group and Materials Science Group for their encouragement and sustained support. The authors also thank UGC-DAE-CSR, Kokkilamedu for the FE-SEM support.

References

  1. 1.
    C. Behar: Technology Roadmap Update for Generation IV Nuclear Energy Systems, OECD Nuclear Energy Agency for the Generation IV International Forum, 2014.Google Scholar
  2. 2.
    Jinsuo Zhang: Corro. Sci., 2015, vol. 51, pp. 1207-27.CrossRefGoogle Scholar
  3. 3.
    A.J. Romano, C.J. Klamut, and D.H. Gurinsky: The investigation of container materials for Bi and Pb alloys Part I Thermal convection Loops No BNL-811, Brookhaven National Laboratory, Upton, 1963.Google Scholar
  4. 4.
    Georgi Ilincˇev: Nucl. Engg. Design, 2002, vol. 217, pp. 167-77.CrossRefGoogle Scholar
  5. 5.
    Y. Kurata, M. Futakawa, and S. Saito: J. Nucl. Mater., 2005, vol. 343, pp. 333-40.CrossRefGoogle Scholar
  6. 6.
    C. Fazio: Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies, 2015th edn, OECD/NEA, Paris 2015, pp. 445-47.Google Scholar
  7. 7.
    J. Ejenstam, and P. Szakálos: J. Nucl. Mater., 2015, vol. 461, pp. 164-70.CrossRefGoogle Scholar
  8. 8.
    R.L. Klueh, and A.T. Nelson: J. Nucl. Mater., 2007, vol. 371, pp. 37-52.CrossRefGoogle Scholar
  9. 9.
    M.E. Angiolini, P. Agostini, F. Di Fonzo, F. García Ferré, L. Pilloni, and M. Utili: Towards a New Approach for Structural Materials of Lead Fast Reactors. https://www.iaea.org/NuclearPower/Downloadable/Meetings/2017/2017-12-12-12-12-NPTDS-test/FR17_WebSite/papers/FR17-227.pdf. Accessed 26 June 2018.
  10. 10.
    E.A. Little, and D.A. Stow: J. Nucl. Mater., 1979, vol. 87, pp. 25-39.CrossRefGoogle Scholar
  11. 11.
    P. Yvon, and F. Carré: J. Nucl. Mater., 2009, vol. 385, pp. 217-22.CrossRefGoogle Scholar
  12. 12.
    G. Muller, G. Schumacher, and F. Zimmermann: J. Nucl. Mater., 2000, vol. 278, pp. 85-95.CrossRefGoogle Scholar
  13. 13.
    C. Schroer, and J. Konys: J. Engg. Gas Turbines Power, 2010, vol. 132, pp. 082901-08.CrossRefGoogle Scholar
  14. 14.
    Y. Kurata: J. Nucl. Mater., 2013, vol. 437, pp. 401-08.CrossRefGoogle Scholar
  15. 15.
    J. Lim: PhD dissertation, MIT, 2006. http://hdl.handle.net/1721.1/41288. Accessed 26 July 2018
  16. 16.
    Jian Wang, Shanping Lu, Lijian Rong, Dianzhong Li, and Yiyi Li: Corro. Sci., 2016, vol. 111, pp. 13-25.CrossRefGoogle Scholar
  17. 17.
    G. Benamat, C. Fazio, H. Piankova, and A. Rusanov: J. Nucl. Mater., 2002, vol. 301, pp. 23-27.CrossRefGoogle Scholar
  18. 18.
    Masatoshi Kondo, and Minoru Takahashi: J. Nucl. Mater., 2006, vol. 356, pp. 203-12.CrossRefGoogle Scholar
  19. 19.
    Jun Lim, Il Soon Hwang, and Ji Hyun Kim: J. Nucl. Mater., 2013, vol. 441, pp. 650-60.CrossRefGoogle Scholar
  20. 20.
    S. Takaya, T. Furukawa, K. Aoto, G. Muller, A. Weisenburger, A. Heinzel, M. Inoue, T. Okuda, F. Abe, S. Ohnuki, T. Fujisawa, and A. Kimura: J. Nucl. Mater., 2009, vol. 386, pp. 507-10.CrossRefGoogle Scholar
  21. 21.
    G. Muller, A. Heinzel, J. Konys, G. Schumacher, A. Weisenburger, F. Zimmermann, V. Engelko, A. Rusanov, and V. Markov: J. Nucl. Mater., 2004, vol. 335, pp. 163-68.CrossRefGoogle Scholar
  22. 22.
    B.D. Cullity, and S.R. Stock: Elements of X-ray Diffraction. 3rd ed, Pearson Education Limited, Harlow, 2014, pp. 376-95.Google Scholar
  23. 23.
    B. Jeya-Ganesh, S. Raju, A.K. Rai, E. Mohandas, M. Vijayalakshmi, K.B.S. Rao, and B. Raj: Mater. Sci. Technol., 2011, vol. 27, pp. 500-512.CrossRefGoogle Scholar
  24. 24.
    D.A. Porter, K.E. Easterling, and M. Sherif: Phase Transformations in Metals and Alloys, (Revised Reprint). CRC Press, Boca Raton, 2009, pp. 202–203.Google Scholar
  25. 25.
    H.L. Yi, S.K. Ghosh, W.J. Liu, K.Y. Lee, and H.K.D.H. Bhadeshia: Mater. Sci. and Technol., 2010, vol. 26, pp. 817-23.CrossRefGoogle Scholar
  26. 26.
    R. Kirana, S. Raju, R. Mythili, S. Saroja, T. Jayakumar, and E. Rajendra-Kumar: Steel Res. Int., 2015, vol. 86, pp. 825-40.CrossRefGoogle Scholar
  27. 27.
    R.L. Klueh and D.R. Harries: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM Monograph-3, ASTM International, West Conshohocken, 2001, p. 28.Google Scholar
  28. 28.
    K. Rajasekhar, C.S. Harendranath, R. Raman, and S.D. Kulkarni: Mater. Chara., 1997, vol. 38, pp. 53-65.CrossRefGoogle Scholar
  29. 29.
    E. Kozeschnik, W. Rindler, and B. Buchmayr: Int. J. Mater. Res., 2007, vol. 98, pp. 826-31.CrossRefGoogle Scholar
  30. 30.
    S. Raju, B. Jeyaganesh, H. Tripathy, S. Murugesan, S. Saibaba, S.K. Albert, and A.K. Bhaduri: Weld. World, 2016, vol. 60, pp. 963–77.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • S. Haribabu
    • 1
  • C. Sudha
    • 1
    Email author
  • S. Raju
    • 1
  • R. N. Hajra
    • 1
  • R. Mythili
    • 1
  • J. Jayaraj
    • 2
  • S. Murugesan
    • 1
  • S. Saroja
    • 1
  1. 1.Physical Metallurgy Division, Materials Characterization Group, Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Corrosion Science and Technology Division, Materials Characterization Group, Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations