Advertisement

Composition Gradient and Particle Deformed Zone: An Emerging Correlation

  • Aditya Prakash
  • Tawqeer Nasir Tak
  • Arijit Lodh
  • Niraj Nayan
  • S. V. S. Narayana Murty
  • P. J. Guruprasad
  • Indradev SamajdarEmail author
Article
  • 31 Downloads

Abstract

Compressive ductility of the as-cast AA7075 was nearly doubled by hot compression and by appropriate homogenization treatment. The latter dissolved the 2nd phase, and introduced compositional gradients around the ‘surviving’ precipitates. Direct observations, through split channel die compression, revealed a correlation between particle deformed zone (PDZ: deformed aluminum matrix surrounding coarse 2nd phase particle), the composition gradient and the working temperature. Local misorientation in the PDZ reduced, remarkably, with the introduction of composition gradient and higher working temperature. The generation of PDZ, especially the influence of the composition gradient and the working temperature, was modeled successfully with discrete dislocation dynamics (DDD). More importantly, tailoring the composition gradients around the second phase brought out clear technological possibility of improving the as-cast compressive ductility without sacrificing the particle content and the compressive strength.

Notes

Acknowledgments

The authors would like to acknowledge ISRO (Indian Space Research Organisation, India) for support. Support from the National Facility of Texture and OIM, CoEST (thermo-mechanical deformation lab), and 4D X-ray microscope lab are also appreciated.

References

  1. 1.
    1. Eskin DG (2008) Physical metallurgy of direct chill casting of aluminum alloys. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    2. Campbell J (2003) Castings: the new metallurgy of cast metals, Second edition. Butterworth-Heinemann Press, OxfordGoogle Scholar
  3. 3.
    3. Hatch JE (1984) Aluminum properties and physical metallurgy, Second edition. ASM, AluminiumGoogle Scholar
  4. 4.
    J. Grandfield,D.G. Eskin and I. Bainbridge,Direct-Chill Casting of Light Alloys: Science and Technology, 2013, The Minerals, Metals & Materials Society, OrlandoCrossRefGoogle Scholar
  5. 5.
    5. Nadella R, Eskin DG, Du Q, Katgerman L (2008) Progress in Materials Science. 53:421-480CrossRefGoogle Scholar
  6. 6.
    6. Lalpoor M, Eskin D, Katgerman L (2008) Materials Science and Engineering A 186:186-194CrossRefGoogle Scholar
  7. 7.
    7. Kaufman JG, Rooy EL (2004) Aluminum Alloy Castings: Properties, Processes, and Applications. ASM International, OhioGoogle Scholar
  8. 8.
    8. Lalpoor M, Eskin DG, Katgerman L (2000) Metall. Mater. Trans. A 40:3304–3313CrossRefGoogle Scholar
  9. 9.
    9. Fgaer HG, Mo A (1990) Metall Trans B 21B:1049-1061Google Scholar
  10. 10.
    10. Drezet JM, Rappaz M (1996) Metall Mater Trans A 27:3214-3225CrossRefGoogle Scholar
  11. 11.
    11. Drezet JM, Phillion AB (2010) Metall. Mater. Trans. A 41A:3396-3404CrossRefGoogle Scholar
  12. 12.
    12. Wang Q.G., Apelian D., Lados D.A. (2001) J. Light Metals 1:73-84CrossRefGoogle Scholar
  13. 13.
    13. Eskin D.G., Suyitno, Katgerman L (2004) Progr. Mater. Sci. 49:629-711CrossRefGoogle Scholar
  14. 14.
    14. Luo A.G., Pekguleryuz M.O. (1994) J. Mater. Sci. 29:5259-5271CrossRefGoogle Scholar
  15. 15.
    15. Fisher J, Hart EW, Pry R (1953) Acta Metall. 1:336-39CrossRefGoogle Scholar
  16. 16.
    16. Embury J.D., Nicholson R. (1963) Acta Metall. 11:347-354CrossRefGoogle Scholar
  17. 17.
    17. McGrath JT, Bratina WJ (1967) Acta Metall. 15:329-339CrossRefGoogle Scholar
  18. 18.
    18. Ardell A.J. (1985) Metall Trans A 16:2131–2165CrossRefGoogle Scholar
  19. 19.
    19. Messerschmidt U, Bartsch M (1993) Mater. Sci. Eng: A 164(1-2):332-339CrossRefGoogle Scholar
  20. 20.
    20. Li BQ, Wawner FE (1998) Acta Mater. 46:5483-5490CrossRefGoogle Scholar
  21. 21.
    21. Gladman T (1999) Mater. Sci. Technol. 15:30-36CrossRefGoogle Scholar
  22. 22.
    22. Huang KE, Marthinsen K, Zhao Q, Logé RE (2018) Progr. Mater. Sci. 92:284-359CrossRefGoogle Scholar
  23. 23.
    23. Takahashi A, Ghoniem NM (2008) J. Mech. Phys. Solids 56(4):1534-1553CrossRefGoogle Scholar
  24. 24.
    24. Williams R. O. (1957) Acta Metall. 5:241-244CrossRefGoogle Scholar
  25. 25.
    J. Douin, P. Donnadieu, and F. Houdellier, Mater. Sci. Eng. A, 2001, Vol. 319–321, pp 270–73.Google Scholar
  26. 26.
    26. Ashby M (1966) Philos. Mag. 14:1157-1178CrossRefGoogle Scholar
  27. 27.
    27. Humphreys F.J., Hatherly M. (2012) Recrystallization and related annealing phenomena. Elsevier, OxfordGoogle Scholar
  28. 28.
    28. Humphreys F., Kalu P. (1987) Acta Metall. 35:2815-2829CrossRefGoogle Scholar
  29. 29.
    29. Humphreys F., Ardakani M.G. (1994) Acta Metall. 42:749-761CrossRefGoogle Scholar
  30. 30.
    30. Vanhoutte P. (1995) Acta Metall. 43:2859-2879CrossRefGoogle Scholar
  31. 31.
    31. Orsund R., Hjelen J., Nes E. (1989) Scripta Metall. 23:1193-1198CrossRefGoogle Scholar
  32. 32.
    32. Mondal C., Mukhopadhyay A.K. (2005) Mater. Sci. Eng. A 391:367-376CrossRefGoogle Scholar
  33. 33.
    33. Panchanadeeswaran S., Doherty R., Becker R. (1996) Acta Mater. 44:1233-1262CrossRefGoogle Scholar
  34. 34.
    34. Singh J., Mahesh S., Kumar G., Pant P., Srivastava D., Dey G., Saibaba N., Samajdar I. (2015) Metall. Mater. Trans. A 46:5058-5071CrossRefGoogle Scholar
  35. 35.
    35. Keskar N., Mukherjee S., Krishna K.M., Srivastava D., Dey G., Pant P., Doherty R., Samajdar I. (2014) Acta Mater. 69:265-274CrossRefGoogle Scholar
  36. 36.
    Standard, A. S. T. M. “E9 (2009) Standard test methods of compression testing of metallic materials at room temperature.” ASTM International, West Conshohocken, PA,2003.Google Scholar
  37. 37.
    37. Nayan N., Murty S.V.S., Gotving RRR, Mittal M.C., Sinha P.P. (2009) Metal Sci. Heat Treat. 51:7–8CrossRefGoogle Scholar
  38. 38.
    38. Edelson B. I., Baldwin W. M. (1962) ASM Trans. 55:230-50Google Scholar
  39. 39.
    39. Verlinden B., DriverJ., Samajdar I., Doherty R.D. (2007) Thermo-Mechanical Processing of Metallic Materials. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    40. Manwatkar S. K., Srinath J., Narayana Murty S. V. S., Ramesh Narayanan P., Sharma S. C., Venkitakrishnan P. V. (2016) J. Fail. Anal. Preven. 16:1141-1149CrossRefGoogle Scholar
  41. 41.
    41. Karamched P.S., Wilkinson A.J. (2011) Acta Mater. 59:263-272CrossRefGoogle Scholar
  42. 42.
    42. Shin C.S., Fivel M.C., Verdier M., Oh K.H. (2003) Philos. Mag. 83:3691-3704CrossRefGoogle Scholar
  43. 43.
    43. Takahashi A., Ghoniem N.M. (2008) J. Mech. Phys. Solids 56:1534-1553CrossRefGoogle Scholar
  44. 44.
    44. Lehtinen A., Granberg F, Laurson L, Nordlund K (2016) Phys. Rev. E 93(1-9):013309CrossRefGoogle Scholar
  45. 45.
    45. Benzerga A. A., Brechet Y., Needleman A., Van der Giessen E, (2004) Modell. Simul. Mater. Sci. Eng. 12:159–196CrossRefGoogle Scholar
  46. 46.
    Giessen E., Needleman RRR (1995) Modell. Simul. Mater. Sci. Eng. 3:689-735CrossRefGoogle Scholar
  47. 47.
    Groh, S., Marin, E. B., Horstmeyer, M. F., Zbib, H., 2009.International Journal of Plasticity 25, 1456-14.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Aditya Prakash
    • 1
  • Tawqeer Nasir Tak
    • 2
  • Arijit Lodh
    • 3
  • Niraj Nayan
    • 1
    • 4
  • S. V. S. Narayana Murty
    • 4
  • P. J. Guruprasad
    • 2
  • Indradev Samajdar
    • 1
    Email author
  1. 1.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Aerospace EngineeringIndian Institute of Technology BombayMumbaiIndia
  3. 3.IITB-Monash Research AcademyIndian Institute of Technology BombayMumbaiIndia
  4. 4.Vikram Sarabhai Space CentreTrivandrumIndia

Personalised recommendations