Advertisement

Fabrication of Metal-Doped Hierarchical Trimodal Porous Li3V2(PO4)3/C Composites with Enhanced Electrochemical Performances for Lithium-Ion Batteries

  • He Wang
  • Longfang Li
  • Shulan WangEmail author
  • Xuan LiuEmail author
  • Li LiEmail author
Article
  • 23 Downloads

Abstract

Na/Cr-doped Li3V2(PO4)3/C composites with a hierarchical trimodal porous structure, including micro-, meso-, and macropores, are synthesized by a feasible ice-templating method and investigated as cathodes for lithium-ion batteries (LIBs). Na and Cr doping decrease the charge transfer resistance of Li3V2(PO4)3/C and increase the diffusion coefficient of Li ions within the three-dimensional interconnected network, resulting in enhancement of both the capacity and rate performances of hierarchical porous Li3V2(PO4)3/C with maximized electrochemical performances at a doping level of x = 0.04. Cr doping shows a higher enhancement than Na in the capacity of Li3V2(PO4)3. As-prepared Cr-doped Li3V1.96Cr0.04(PO4)3/C shows the high capacity and rate performance of 116.8 mAh g−1 at 10 C as well as an excellent cyclability. This work provides a simple and feasible method to fabricate metal-doped hierarchical trimodal porous cathode materials and deepens our understanding on design of high-performance electrode materials for LIBs.

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 51574062).

Conflict of interest

The authors express no conflict of interest.

Supplementary material

11661_2018_5075_MOESM1_ESM.docx (711 kb)
Supplementary material 1 (DOCX 710 kb)

References

  1. 1.
    Y. Cheng, K. Feng, W. Zhou, H. Zhang, X. Li, and H. Zhang: Dalton Trans., 2015, vol. 44, pp. 17579–17586.CrossRefGoogle Scholar
  2. 2.
    D. Bhuvaneswari and N. Kalaiselvi: Dalton Trans., 2014, vol. 43, pp. 18097–18103.CrossRefGoogle Scholar
  3. 3.
    L. Mai, S. Li, Y. Dong, Y. Zhao, Y. Luo, and H. Xu: Nanoscale, 2013, vol. 5, pp. 4864–69.CrossRefGoogle Scholar
  4. 4.
    Y. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, and L. Chen: Electrochim. Acta, 2009, vol. 54, pp. 5844–50.CrossRefGoogle Scholar
  5. 5.
    D.-W. Han, S.-J. Lim, Y.-I. Kim, S.H. Kang, Y.C. Lee, and Y.-M. Kang: Chem. Mater., 2014, vol. 26, pp. 3644–50.CrossRefGoogle Scholar
  6. 6.
    B. Xu, C.R. Fell, M. Chi, and Y.S. Meng: Energy Environ. Sci., 2011, vol. 4, pp. 2223–33.CrossRefGoogle Scholar
  7. 7.
    M.-S. Choi, H.-S. Kim, Y.-M. Lee, and B.-S. Jin: J. Mater. Chem. A, 2014, vol. 2, pp. 7873–79.CrossRefGoogle Scholar
  8. 8.
    C. Wang, Z. Li, H. Liu, and Y. Wang: New J. Chem., 2017, vol. 41, pp. 8772–80.CrossRefGoogle Scholar
  9. 9.
    S.-C. Yin, H. Grondey, P. Strobel, M. Anne, and L.F. Nazar: J. Am. Chem. Soc., 2003, vol. 125, pp. 10402–10411.CrossRefGoogle Scholar
  10. 10.
    A.R. Cho, J.N. Son, V. Aravindan, H. Kim, K.S. Kang, W.S. Yoon, W.S. Kim, and Y.S. Lee: J. Mater. Chem., 2012, vol. 22, pp. 6556–60.CrossRefGoogle Scholar
  11. 11.
    C. Sun, S. Rajasekhara, Y. Dong, and J.B. Goodenough: ACS Appl. Mater. Interfaces, 2011, vol. 3, pp. 3772–76.CrossRefGoogle Scholar
  12. 12.
    L. Fei, L. Sun, W. Lu, M. Guo, H. Huang, J. Wang, H.L. Chan, S. Fan, and Y. Wang: Nanoscale, 2014, vol. 6, pp. 12426–12433.CrossRefGoogle Scholar
  13. 13.
    L.-L. Zhang, G. Liang, G. Peng, F. Zou, Y.-H. Huang, M.C. Croft, and A. Ignatov: J. Phys. Chem. C, 2012, vol. 116, pp. 12401–08.CrossRefGoogle Scholar
  14. 14.
    K. Naoi, K. Kisu, E. Iwama, Y. Sato, M. Shinoda, N. Okita, and W. Naoi: J. Electrochem. Soc., 2015, vol. 162, pp. A827–A833.CrossRefGoogle Scholar
  15. 15.
    K. Cui, S. Hu, and Y. Li: Electrochim. Acta, 2016, vol. 210, pp. 45–52.CrossRefGoogle Scholar
  16. 16.
    Z. Li, L.-L. Zhang, X.-L. Yang, H.-B. Sun, Y.-H. Huang, and G. Liang: RSC Adv., 2016, vol. 6, pp. 10334–10340.CrossRefGoogle Scholar
  17. 17.
    Q. Kuang, Y. Zhao, and Z. Liang: J. Power Sources, 2011, vol. 196, pp. 10169–10175.CrossRefGoogle Scholar
  18. 18.
    C. Dai, Z. Chen, H. Jin, and X. Hu: J. Power Sources, 2010, vol. 195, pp. 5775–79.CrossRefGoogle Scholar
  19. 19.
    W. Wang, J. Zhang, Z. Jia, C. Dai, Y. Hu, J. Zhou, and Q. Xiao: Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 13858–13865.CrossRefGoogle Scholar
  20. 20.
    K. Feng, Y. Cheng, M. Wang, H. Zhang, X. Li, and H. Zhang: J. Mater. Chem. A, 2015, vol. 3, pp. 19469–19475.CrossRefGoogle Scholar
  21. 21.
    H. Liu, P. Gao, J. Fang, and G. Yang: Chem. Commun., 2011, vol. 47, pp. 9110–12.CrossRefGoogle Scholar
  22. 22.
    C. Wang, H. Liu, and W. Yang: J. Mater. Chem., 2012, vol. 22, pp. 5281–85.CrossRefGoogle Scholar
  23. 23.
    A. Pan, J. Liu, J.-G. Zhang, W. Xu, G. Cao, Z. Nie, B.W. Arey, and S. Liang: Electrochem. Commun., 2010, vol. 12, pp. 1674–77.CrossRefGoogle Scholar
  24. 24.
    Y. Luo, X. Xu, Y. Zhang, Y. Pi, Y. Zhao, X. Tian, Q. An, Q. Wei, and L. Mai: Adv. Energy Mater., 2014, vol. 4, pp. 1400107–1400114.CrossRefGoogle Scholar
  25. 25.
    R.-G. Oh, J.-E. Hong, H.-W. Jung, and K.-S. Ryu: J. Power Sources, 2015, vol. 295, pp. 1–8.CrossRefGoogle Scholar
  26. 26.
    Q.-Z. Ou, Y. Tang, Y.-J. Zhong, X.-D. Guo, B.-H. Zhong, L. Heng, and M.-Z. Chen: Electrochim. Acta, 2014, vol. 137, pp. 489–96.CrossRefGoogle Scholar
  27. 27.
    Q. Qu, L. Fu, X. Zhan, D. Samuelis, J. Maier, L. Li, S. Tian, Z. Li, and Y. Wu: Energy Environ. Sci., 2011, vol. 4, pp. 3985–90.CrossRefGoogle Scholar
  28. 28.
    S. Wang, Z. Zhang, S. Fang, L. Yang, C. Yang, and S.-I. Hirano: Electrochim. Acta, 2013, vol. 111, pp. 685–90.CrossRefGoogle Scholar
  29. 29.
    H. Li, X. Yu, Y. Bai, F. Wu, C. Wu, L.-Y. Liu, and X.-Q. Yang: J. Mater. Chem. A, 2015, vol. 3, pp. 9578–86.CrossRefGoogle Scholar
  30. 30.
    R. Zhang, Y. Zhang, K. Zhu, F. Du, Q. Fu, X. Yang, Y. Wang, X. Bie, G. Chen, and Y. Wei: ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 12523–12530.CrossRefGoogle Scholar
  31. 31.
    J.B.Y.A.X.P. Zhao: J. Phys. Chem. B, 2006, vol. 110, pp. 12916–25.Google Scholar
  32. 32.
    C. Wei, W. He, X. Zhang, F. Xu, Q. Liu, C. Sun, and X. Song: RSC Adv., 2015, vol. 5, pp. 54225–54245.CrossRefGoogle Scholar
  33. 33.
    Q. Wei, Q. An, D. Chen, L. Mai, S. Chen, Y. Zhao, K.M. Hercule, L. Xu, A. Minhas-Khan, and Q. Zhang: Nano Lett., 2014, vol. 14, pp. 1042–48.CrossRefGoogle Scholar
  34. 34.
    J. Su, X.-L. Wu, J.-S. Lee, J. Kim, and Y.-G. Guo: J. Mater. Chem. A, 2013, vol. 1, pp. 2508–14.CrossRefGoogle Scholar
  35. 35.
    N. Meethong, Y.-H. Kao, S.A. Speakman, and Y.-M. Chiang: Adv. Funct. Mater., 2009, vol. 19, pp. 1060–70.CrossRefGoogle Scholar
  36. 36.
    S.Y. Chung, J.T. Bloking, and Y.M. Chiang: Nat. Mater., 2002, vol. 1, pp. 123–28.CrossRefGoogle Scholar
  37. 37.
    Z. Wang, W. He, X. Zhang, Y. Yue, G. Yang, X. Yi, Y. Wang, and J. Wang: ChemElectroChem, 2017, vol. 4, pp. 671–78.CrossRefGoogle Scholar
  38. 38.
    P. Fu, Y. Zhao, Y. Dong, X. An, and G. Shen: J. Power Sources, 2006, vol. 162, pp. 651–57.CrossRefGoogle Scholar
  39. 39.
    J.-C. Zheng, X.-H. Li, Z.-X. Wang, H.-J. Guo, Q.-Y. Hu, and W.-J. Peng: J. Power Sources, 2009, vol. 189, pp. 476–79.CrossRefGoogle Scholar
  40. 40.
    C. Wang, W. Shen, and H. Liu: New J. Chem., 2014, vol. 38, pp. 430–36.CrossRefGoogle Scholar
  41. 41.
    X. Nan, C. Zhang, C. Liu, M. Liu, Z.L. Wang, and G. Cao: ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 862–70.CrossRefGoogle Scholar
  42. 42.
    R. Wang, S. Xiao, X. Li, J. Wang, H. Guo, and F. Zhong: J. Alloys Compd., 2013, vol. 575, pp. 268–72.CrossRefGoogle Scholar
  43. 43.
    L. Liu, X. Lei, H. Tang, R. Zeng, Y. Chen, and H. Zhang: Electrochim. Acta, 2015, vol. 151, pp. 378–85.CrossRefGoogle Scholar
  44. 44.
    J. Kim, J.-K. Yoo, Y.S. Jung, and K. Kang: Adv. Energy Mater., 2013, vol. 3, pp. 1004–07.CrossRefGoogle Scholar
  45. 45.
    Y. Wang, L. Wang, Z. Hou, and W. Mao: Solid State Ionics, 2014, vol. 261, pp. 11–16.CrossRefGoogle Scholar
  46. 46.
    Y. Yu, L. Gu, X. Lang, C. Zhu, T. Fujita, M. Chen, and J. Maier: Adv. Mater., 2011, vol. 23, pp. 2443–47.CrossRefGoogle Scholar
  47. 47.
    S. Wang, W. Zhao, Y. Wang, X. Liu, and L. Li: Electrochim. Acta, 2013, vol. 109, pp. 46–51.CrossRefGoogle Scholar
  48. 48.
    S. Yang, X. Feng, and K. Mullen: Adv. Mater., 2011, vol. 23, pp. 3575–79.CrossRefGoogle Scholar
  49. 49.
    Y. Zhang, X. Liu, S. Wang, S. Dou, and L. Li: J. Mater. Chem. A, 2016, vol. 4, pp. 10869–77.CrossRefGoogle Scholar
  50. 50.
    G.C.D. Morgan, M.Y. Saıdi, J. Barker, J. Swoyer, H. Huang, and G. Adamson: Chem. Mater., 2002, vol. 14, pp. 4684–93.CrossRefGoogle Scholar
  51. 51.
    S. Sarkar and S. Mitra: J. Phys. Chem. C, 2014, vol. 118, pp. 11512–11525.CrossRefGoogle Scholar
  52. 52.
    H. Wang, Y. Li, C. Huang, Y. Zhong, and S. Liu: J. Power Sources, 2012, vol. 208, pp. 282–87.CrossRefGoogle Scholar
  53. 53.
    J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, and Z.X. Shen: Adv. Sci., 2018, vol. 5, pp. 1700322–41.CrossRefGoogle Scholar
  54. 54.
    J. Wang, J. Polleux, J. Lim, and B. Dunn: J. Phys. Chem. C, 2007, vol. 11, pp. 14925–14931.CrossRefGoogle Scholar
  55. 55.
    C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li, X. Han, Z. Liu, J. Yang, W. Xiao, J. Liang, X. Sun, and J. Qiu: Adv. Energy Mater., 2017, vol. 7, pp. 1602880–1602887.CrossRefGoogle Scholar
  56. 56.
    D.W. Wang, F. Li, M. Liu, G.Q. Lu, and H.-M. Cheng: Angew. Chem., 2008, vol. 120, pp. 379–82.CrossRefGoogle Scholar
  57. 57.
    Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P.A. van Aken, and J. Maier: Adv. Mater., 2010, vol. 22, pp. 2247–50.CrossRefGoogle Scholar
  58. 58.
    Q. Chen, X. Qiao, Y. Wang, T. Zhang, C. Peng, W. Yin, and L. Liu: J. Power Sources, 2012, vol. 201, pp. 267–73.CrossRefGoogle Scholar
  59. 59.
    W. Yuan, J. Yan, Z. Tang, O. Sha, J. Wang, W. Mao, and L. Ma: Electrochim. Acta, 2012, vol. 72, pp. 138–42.CrossRefGoogle Scholar
  60. 60.
    C. Deng, S. Zhang, S.Y. Yang, Y. Gao, B. Wu, L. Ma, B.L. Fu, Q. Wu, and F.L. Liu: J. Phys. Chem. C, 2011, vol. 115, pp. 15048–15056.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of ScienceNortheastern UniversityShenyangP.R. China
  2. 2.School of MetallurgyNortheastern UniversityShenyangP.R. China

Personalised recommendations