Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1273–1282 | Cite as

Investigation on Interface Morphology and Mechanical Properties of Three-Layer Laser Impact Welding of Cu/Al/Cu

  • Huixia LiuEmail author
  • Hao Jin
  • Meng Shao
  • Heng Tang
  • Xiao Wang
Article
  • 178 Downloads

Abstract

In this study, laser impact welding technology was applied to fabricate a three-layer Cu/Al/Cu joint. A series of experiments were carried out to investigate the interface morphology and mechanical properties of the welding samples. Results revealed that different morphologies were generated at the upper and lower interfaces. The lower interface morphology transformed from straight to wavy as the collision point moved outward from the center along the radius. With the increase of laser pulse energy, the areas of upper and lower bonding regions expanded. When the laser energy was small, intermetallics and melting zones were absent and slight element diffusion occurred near the upper and lower interfaces. Melting zones occurred at the welding interface when the laser energy increased. Quantitative analysis by energy dispersive spectroscopy found that Al/Cu intermetallics may be produced in the melting region. Nanoindentation hardness test indicated that as the distance from the upper and lower interfaces decreased, the hardness of flyer plate and base plate increased. Two failure modes, that is, fracture failure at the upper and lower bonding interfaces, were observed under different laser energies.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51675241) and College Students’ Practical Innovation Fund of Industry Center of Jiangsu University (No. ZXJG201770).

References

  1. 1.
    X. Li, H. Ma and Z. Shen: Mater. Des., 2015, vol. 87, pp. 815-824.CrossRefGoogle Scholar
  2. 2.
    I.K. Kim and S.I. Hong: Mater. Des., 2013, vol. 47, pp. 590-598.CrossRefGoogle Scholar
  3. 3.
    L.Y. Sheng, F. Yang, T.F. Xi, C. Lai and H.Q. Ye: Compos. Part B, 2011, vol. 42, pp. 1468-1473.CrossRefGoogle Scholar
  4. 4.
    T.A. Mai and A.C. Spowage: Mater. Sci. Eng. A, 2004, vol. 374, pp. 224-233.CrossRefGoogle Scholar
  5. 5.
    H.C Tseng, C. Hung and C.C. Huang: Int. J. Adv. Manuf. Technol., 2010, vol. 49, pp. 1029-1036.CrossRefGoogle Scholar
  6. 6.
    B. Wang, W. Chen, J. Li, Z. Liu and X. Zhu: Mater. Des., 2013, vol. 47, pp. 74-79.CrossRefGoogle Scholar
  7. 7.
    F. Findik: Mater. Des., 2011, vol. 32, pp. 1081-1093.CrossRefGoogle Scholar
  8. 8.
    B. Gulenc: Mater. Des. 2008, vol. 29, pp. 275-278.CrossRefGoogle Scholar
  9. 9.
    F. Foadian, M. Soltanieh, M. Adeli and M. Etminanbakhsh: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1823-1832.CrossRefGoogle Scholar
  10. 10.
    X. Wu and J. Shang: J. Manuf. Sci. Eng., 2014, vol. 136,  https://doi.org/10.1115/1.4027917.Google Scholar
  11. 11.
    R.N. Raoelisona, T. Sapanathana, N. Buirona and M. Rachik: J. Manuf. Process., 2015, vol. 46A, pp. 112-127.CrossRefGoogle Scholar
  12. 12.
    [Y. Zhang, S.S. Babu, C. Prothe, M. Blakely, J. Kwasegroch, M. LaHa and G. S. Daehna: J. Mater. Process. Technol., 2011, vol. 211, pp. 944-952.CrossRefGoogle Scholar
  13. 13.
    G.S Daehn and J.C Lippold. (U.S. Patent PCT/US09/36299), Accessed 6 Jan 2011.Google Scholar
  14. 14.
    X. Wang, C. Gu, Y. Zheng, Z. Shen and H. Liu: Mater. Des., 2014, vol. 56, pp. 26-30.CrossRefGoogle Scholar
  15. 15.
    H. Wang, A. Vivek, Y. Wang, G. Taber and G.S. Daehn: J. Laser Appl., 2016, vol. 28,  https://doi.org/10.2351/1.4946887..Google Scholar
  16. 16.
    X. Wang, Y. Gu, T. Qiu, Y. Ma, D. Zhang and H. Liu: Mater. Des. 2015, vol. 65, pp. 1143-1152.CrossRefGoogle Scholar
  17. 17.
    H. Liu, S. Gao, Z. Yan, L. Li, C. Li, X. Sun, C. Sha, Z. Shen, Y. Ma and X. Wang: Metals-Open Access Metall. J., 2016, vol. 6,  https://doi.org/10.3390/met6080179.Google Scholar
  18. 18.
    X. Wang, Y. Luo, T. Huang and H. Liu: Materials (Basel), 2017, vol. 10  https://doi.org/10.3390/ma10050523 Google Scholar
  19. 19.
    X. Wang, T. Huang, Y. Luo and H. Liu: Materials (Basel), 2017, vol. 10  https://doi.org/10.3390/ma10091070 Google Scholar
  20. 20.
    L. Han, A. Chrysanthou and K.W. Young: Mater. Des., 2007, vol. 28, pp. 2024-2033.CrossRefGoogle Scholar
  21. 21.
    J. Shen, Y. Zhang, X. Lai and P.C Wang: Mater. Des., 2011, vol. 32, pp. 550-560.CrossRefGoogle Scholar
  22. 22.
    C.V. Nielsen, K.S. Friis, W. Zhang and N. Bay: Weld. J., 2011, vol. 90, pp. 32s-40s.Google Scholar
  23. 23.
    H. Wang, G. Taber, D. Liu, S. Hansen, E. Chowhury, S. Terry, J. Lippolda and G. Daehnb: J. Manufa. Process., 2015, vol. 19, pp. 118-124.CrossRefGoogle Scholar
  24. 24.
    H. Liu, Z. Shen, X. Wang, H. Wang and M. Tao: Int. J. Mach. Tool. Manuf., 2010, vol. 50, pp. 491-494.CrossRefGoogle Scholar
  25. 25.
    X. Guo, Y. Ma, K. Jin, H. Wang, J. Tao and M. Fan: J. Mater. Eng. Perform., 2017, vol. 26, pp. 4235-4244.CrossRefGoogle Scholar
  26. 26.
    D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, G. Lopez, A. Wierzbicka-Miernik, N. Schell, Z. Szulc and J. Wojewoda-Budka: Metall. Mater. Trans. A, 2017, vol. 48, pp. 1-12.Google Scholar
  27. 27.
    S. Saravanan, K. Raghukandan and K. Hokamoto: Arch. Civil Mech. Eng., 2016, vol. 16, pp.563-568.CrossRefGoogle Scholar
  28. 28.
    M.M. Hoseini Athar and B. Tolaminejad: Mater. Des., 2015, vol. 86, pp. 516-525.CrossRefGoogle Scholar
  29. 29.
    M. Honarpisheh, J. Niksokhan and F. Nazari: Metall. Res. Tech., 2016, vol. 113  https://doi.org/10.1051/metal/2015049 Google Scholar
  30. 30.
    F. Grignon, D.J. Benson, K.S. Vecchio and M.A. Meyers: Int. J. Impact Eng., 2004, vol. 30, pp. 1333-1351.CrossRefGoogle Scholar
  31. 31.
    N. Kahraman, B. Gulenc and F. Findik: Int. J. Impact Eng., 2007, vol. 34, pp. 1423-1432.CrossRefGoogle Scholar
  32. 32.
    A. Vivek, S. Hansen, J. Benzing, M. He, and G. Daehn: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4548-4558.CrossRefGoogle Scholar
  33. 33.
    X. Wang, H. Zhang, Z. Shen, J. Li, Q. Qian and H. Liu: Opt. Laser. Eng. 2016, vol. 86, pp. 291-302.CrossRefGoogle Scholar
  34. 34.
    H. Paul, Lidia Lityńska-Dobrzyńska, Mariusz Prażmowski: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3836-3851.CrossRefGoogle Scholar
  35. 35.
    I.V. Oliveira, A.J. Cavaleiro, G.A. Taber and A. Reis, Magnetic Pulse Welding of Dissimilar Materials. 2017, pp. 419-431.  https://doi.org/10.1007/978-3-319-50784-2_31.Google Scholar
  36. 36.
    V.I. Lysak and S.V. Kuzmin: J. Mater. Process. Technol., 2015, vol. 222, pp. 356-364.CrossRefGoogle Scholar
  37. 37.
    W.X. Wang, X. Cao, N. Zhang and J. Wu: Mater. Des. 2015, vol. 65, pp. 1100-1109.CrossRefGoogle Scholar
  38. 38.
    M. Honarpisheh, M. Asemabadi and M. Sedighi: Mater. Des., 2012, vol. 37, pp. 122-127.CrossRefGoogle Scholar
  39. 39.
    M.A. Habib, H. Keno and R. Uchida: J. Mater. Process. Technol., 2015, vol. 217, pp. 310-316.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Huixia Liu
    • 1
    Email author
  • Hao Jin
    • 1
  • Meng Shao
    • 1
  • Heng Tang
    • 1
  • Xiao Wang
    • 1
  1. 1.School of Mechanical EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations