Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1460–1467 | Cite as

Quantifying Void Formation and Changes to Microstructure During Hydrogen Charging: A Precursor to Embrittlement and Blistering

  • Liam S. MorrisseyEmail author
  • Stephen M. Handrigan
  • Sam Nakhla
Article
  • 80 Downloads

Abstract

Hydrogen diffusion into the microstructure is a key first step for both hydrogen embrittlement and hydrogen blistering. Previous research has suggested that an increase in voids pre-loading can significantly affect the void growth and failure of samples during loading. However, there is a lack of knowledge on the effect of hydrogen alone on initial void fraction. Therefore, the microstructures of six samples of 13 pct chromium stainless steel were imaged using a computed tomography technique before and after hydrogen charging. These images were then formed into a 3D model to quantify the total void volume fraction before and after charging. Overall, charging was shown to increase void fraction by 18 times. This work provides support to the theory that an important role of hydrogen in promoting failure is to increase void production through recombination into H2.

Notes

Acknowledgments

The authors would like to thank Suncor Energy and Natural Sciences and Engineering Research Council of Canada (NSERC) for their contributions to this Research Project.

References

  1. 1.
    1. M. R. Louthan, Journal of Failure Analysis and Prevention 2008, vol. 8, pp. 289-307.CrossRefGoogle Scholar
  2. 2.
    2. X. C. Ren, Q. J. Zhou, G. B. Shan, W. Y. Chu, J. X. Li, Y. J. Su and L. J. Qiao, Metallurgical and Materials Transactions A 2008, vol. 39, pp. 87-97.CrossRefGoogle Scholar
  3. 3.
    3. I. M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang, D. W. Gross and K. E. Nygren, Metallurgical and Materials Transactions B 2015, vol. 46, pp. 1085-1103.CrossRefGoogle Scholar
  4. 4.
    4. R. A. Oriani and P. H. Josephic, Acta Metallurgica 1974, vol. 22, pp. 1065-1074.CrossRefGoogle Scholar
  5. 5.
    5. H. K. Birnbaum and P. Sofronis, Materials Science and Engineering: A 1994, vol. 176, pp. 191-202.CrossRefGoogle Scholar
  6. 6.
    6. M. Nagumo, Materials Science and Technology 2004, vol. 20, pp. 940-950.CrossRefGoogle Scholar
  7. 7.
    7. X. Gao, T. Wang and J. Kim, International Journal of Solids and Structures 2005, vol. 42, pp. 5097-5117.CrossRefGoogle Scholar
  8. 8.
    P. Iassonov, T. Gebrenegus and M. Tuller, Water Resources Research 2009, vol. 45.Google Scholar
  9. 9.
    9. B. Leszczyński, A. Gancarczyk, A. Wróbel, M. Piątek, J. Łojewska, A. Kołodziej and R. Pędrys, Journal of Nondestructive Evaluation 2016, vol. 35, p. 35.CrossRefGoogle Scholar
  10. 10.
    C. Reinhart: 17th World Conf. Nondestr. Test., Citeseer, 2008, pp. 25–28.Google Scholar
  11. 11.
    N. Otsu, IEEE transactions on systems, man, and cybernetics 1979, vol. 9, pp. 62-66.CrossRefGoogle Scholar
  12. 12.
    S. Laustsen, D.P. Bentz, M.T. Hasholt, and O.M. Jensen: Int. RILEM Conf. Use Superabsorbent Polym. Other N. Addit. Concr., RILEM Publications SARL, 2010, pp. 153–62.Google Scholar
  13. 13.
    13. B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo and T. Nakamura, Biomaterials 2006, vol. 27, pp. 5892-5900.CrossRefGoogle Scholar
  14. 14.
    14. I. Jerjen, L. D. Poulikakos, M. Plamondon, P. Schuetz, T. Luethi and A. Flisch, Physics Procedia 2015, vol. 69, pp. 451-456.CrossRefGoogle Scholar
  15. 15.
    15. D. Seo, H. Toda, M. Kobayashi, K. Uesugi, A. Takeuchi and Y. Suzuki, ISIJ International 2015, vol. 55, pp. 1474-1482.CrossRefGoogle Scholar
  16. 16.
    16. Y. Kim, Y. Kim, D. Kim, S. Kim, W. Nam and H. Choe, MATERIALS TRANSACTIONS 2011, vol. 52, pp. 507-513.CrossRefGoogle Scholar
  17. 17.
    17. R. A. Siddiqui and H. A. Abdullah, Journal of Materials Processing Technology 2005, vol. 170, pp. 430-435.CrossRefGoogle Scholar
  18. 18.
    18. A. L. Gurson, Journal of Engineering Materials and Technology 1977, vol. 99, pp. 2-15.CrossRefGoogle Scholar
  19. 19.
    19. M. Springmann and M. Kuna, Computational Materials Science 2005, vol. 32, pp. 544-552.CrossRefGoogle Scholar
  20. 20.
    20. M. Azuma, S. Goutianos, N. Hansen, G. Winther and X. Huang, Materials Science and Technology 2012, vol. 28, pp. 1092-1100.CrossRefGoogle Scholar
  21. 21.
    21. N. Chawla and X. Deng, Materials Science and Engineering: A 2005, vol. 390, pp. 98-112.CrossRefGoogle Scholar
  22. 22.
    L. S. Morrissey and S. Nakhla: A Finite Element Model to Predict the Effect of Porosity on Elastic Modulus in Low-Porosity Materials. (2018).CrossRefGoogle Scholar
  23. 23.
    23. R. A. Hardin and C. Beckermann, Metallurgical and Materials Transactions A 2007, vol. 38, pp. 2992-3006.CrossRefGoogle Scholar
  24. 24.
    P.G. Kossakowski and W. Wciślik: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, p. 022050.Google Scholar
  25. 25.
    25. W. Wcislik, Procedia Structural Integrity 2016, vol. 2, pp. 1676-1683.CrossRefGoogle Scholar
  26. 26.
    26. V. Uthaisangsuk, U. Prahl, S. Münstermann and W. Bleck, Computational Materials Science 2008, vol. 43, pp. 43-50.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Liam S. Morrissey
    • 1
    Email author
  • Stephen M. Handrigan
    • 1
  • Sam Nakhla
    • 1
  1. 1.Department of Mechanical EngineeringMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations